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ABSTRACT

The purpose of this research was to develop a methodology to analyze x-ray pair distribution func-

tion data for amorphous and crystalline complex oxides. The samples consisted of indium-based

oxide transparent semiconductor thin films ranging from fully amorphous to fully crystalline.

X-ray scattering data were collected at Argonne National Laboratory. We evaluated the films’

lateral and depth uniformity by analyzing different sections of the data that were measured at

different penetration depths. The data were analyzed with existing software packages and new

Matlab code. The analysis enables the extraction of information about the short-range ordering

of the atoms in the materials.
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Chapter 1

Introduction

1.1 Background

Transparent conducting oxides (TCOs) were discovered in 1907, but their practical applications

were not realized till the middle of the twentieth century [1]. Technologies developed that utilized

crystalline TCOs as research into their properties and uses increased over the decades [2]. Since

their discovery, TCOs have found their way into everyday life from our smartphone touchscreens

to flat-panel televisions to solar panels. TCOs are unique in that they are semiconductors that

have high electrical conductivity and are transparent in the visible region. Recently, manu-

facturers have started experimenting with using amorphous TCOs in their devices to create

flexible products like bendable televisions and foldable smartphones. Amorphous TCOs have

advantages over crystalline TCOs in that they can be manufactured at lower temperatures and

can be deposited on plastic substrates that are flexible. Lower manufacturing temperatures can

cut down on the cost of manufacturing, and the ability to deposit on different substrates allows

for the creation of more durable products. The advantages that amorphous TCOs bring comes

without significant loss to their electrical or optical properties, and in some cases, the electrical

properties can be better than traditional crystalline TCOs [3].

Amorphous samples do not have a long-range ordering of atoms, therefore, typical x-ray diffrac-

tion techniques cannot provide structural information about these TCOs [2]. Extended x-ray

absorption fine structure (EXAFS) is an x-ray technique used to study the short-range structure

of amorphous and crystalline TCOs, and it is produced by backscattering of photoelectrons by

an atom’s nearest neighbors [3].

There have been numerous EXAFS studies probing crystalline and amorphous TCOs. These

studies have experimentally measured the coordination numbers and bond lengths of indium

oxide (IO) and zinc indium tin oxide (ZITO). The coordination number tells us at a given distance

the number of atoms surrounding a particular atom. The first pairing of indium and oxygen

atoms is referred to as the first shell. This closest shell is found around 2.18Å [2]. The second

and third shells in IO correspond to pairings of indium to indium. The second, third, and fourth

shells in ZITO correspond to pairings of indium to indium or indium to zinc or indium to tin.

The studies that have been done on amorphous IO and ZITO typically concentrate on the first

shell, because the EXAFS signal significantly decreases for higher-order shells like the second

and third shells [2].
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In this study, a 70 keV x-ray beam was used to obtain data to produce a pair-distribution function

(PDF). The experimental setup allows for the measuring of the second and third shells. A radial-

distribution function (RDF) is used to analyze the structure by determining the bond length,

coordination number, and full width at half maximum (FWHM) for the first, second, and third

shells.

1.2 RDF and PDF Theory

PDFs are measured to obtain structural information about materials. PDFs help us extract bond

lengths and coordination numbers between atoms. Fourier analysis of total-scattering data

is known as PDF analysis [4]. The scattering amplitude Ψ (Q) is given by Eq. 1.1, where 〈b〉 is

the compositional scattering amplitude average given by Eq. 1.2, and b j defines the scattering

amplitude for the atoms [4]. The position of the j th atom is R j , and N is the number of atoms

[4].

Ψ (Q) = 1

〈b〉
∑

j
b j (1.1)

〈b〉 = 1

N

∑
j

b j e iQ∗R j (1.2)

The diffraction vector, Q, is the wavevector difference between the incoming beam, ki ni t , and

the scattered beam, k f i nal , given as Q = ki ni t −k f i nal [4]. Unfortunately, it is not possible to

measureΨ (Q) directly, but we can measure the intensity of the diffracted beam, which is related

to the square of the magnitude ofΨ (Q) or |Ψ (Q)|2 [4].

The intensity I (Q) can be found from Eq. 1.3 [4].

I (Q) = 1

N

∑
j ,l

b j bl e iQ(R j−Rl ) 〈b〉2 −〈
b2〉 (1.3)

Using Eq. 1.3, we get the total-scattering function S (Q):

S (Q) = I (Q)

〈b〉2 (1.4)

The Fourier transform of the structure-function is the PDF [4]. From S (Q) we can get the reduced-
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structure function F (Q), Eq. 1.5, which can be used to obtain the Reduced PDF (RPDF) or G (r )

given by Eq. 1.6.

F (Q) =Q [S (Q)−1] (1.5)

G (r ) is a function in real space where structural information can be extracted. G (r ) can also be

written as Eq.1.7 where ρ0 is the average number density, and g (r ) is the atomic pair distribution

function [4].

G (r ) =
∫ Qmax

Qmi n

F (Q) si n (Qr )dQ (1.6)

G (r ) = 4πrρ0
[
g (r )−1

]
(1.7)

The RDF, R (r ) can be obtained from the RPDF using Eq. 1.8 which can be combined with Eq. 1.7

to get Eq. 1.9.

R (r ) =G (r )r +4πr 2ρ0 (1.8)

R (r ) = 4πr 2ρ0g (r ) (1.9)

The peak locations of the RDF give information about the bond length between atoms, and

the coordination number can be extracted from the integration of the area under a peak. The

coordination number Nc or the number of nearest neighboring atoms is proportional to the

area underneath a peak through Eq. 1.10, where r1 and r2 define the peak corresponding to the

coordination shell [4].

Nc =
∫ r2

r1

R (r )dr (1.10)
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1.3 Motivation

The main goal of researching TCOs is to find better materials with improved properties, such

as electron mobility and mechanical flexibility. Higher electron mobility can be found in fully

crystalline samples, but also in some amorphous samples, which also have improved mechanical

properties. Amorphous TCOs are not rigid, so they can be deposited on flexible substrates like

plastic which can bend more without cracking.

Through the study of different deposition temperatures and dopant for TCOs, the effects on

the atomic structure can be seen, such as changes in bond length, coordination number, or

FWHM. This study can help in the optimization of TCOs’ macroscopic properties and guide

their industrial synthesis. Studying multiple types of TCOs allows for the exploration of different

compounds for diverse applications. Finding the best way to analyze PDF data of TCO samples

will allow more samples to be analyzed faster. A clear procedure allows for the automation of

certain parts of the analysis through coding, and allows for the standardization of the data since

all data will be analyzed and normalized in the same manner. This standardization makes it

is easier to compare different TCOs and see trends in the data. Therefore, a range of samples

from amorphous to crystalline and doped and undoped were analyzed in order to find the best

technique for analysis.
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Chapter 2

Methodology

2.1 Data Collection

The samples used in this study were grown using pulsed-laser deposition (PLD) at Northwestern

University by the Chang group [5, 6]. For amorphous samples to be made, the substrate was

cooled in order to prevent the atoms from arranging into a lattice [2]. In this experiment, the

substrate was fused silica [6]. The electrical properties of these samples were also measured at

Northwestern by the Chang group. The physical and electrical properties are affected by the

deposition temperature along with the thickness [6]. High energy x-ray scattering data of these

samples were collected at the Advanced Photon Source at Argonne National Laboratory. Figure

2.1 shows the instrumental setup used for wide-angle x-ray scattering (WAXS) as well as PDF

measurements [7].

Figure 2.1: Schematic of the experimental setup showing the sample and the arrangement of the four-
panel array of 2D detectors. IP stands for in-plane and OP stands for out-of-plane. The figure is taken
from González, G. B., et al; "Relationship between electrical properties and crystallization of indium oxide
thin films using ex-situ grazing-incidence wide-angle x-ray scattering"; Journal of Applied Physics 121.20
(2017): 205306 [7].
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2.2 GSAS II

GSAS II [8] is an open-source Python project used for analysis in crystallographic studies. It

can integrate a 2-dimensional image and create a 1-dimensional representation. We do this

conversion in order to be able to get structural information about the material from the image.

Before GSAS II can be used to integrate the 2-dimensional images collected from the samples,

the positions and tilts of the detectors must be calibrated. Calibration must be done on the

detector so that every pixel maps to a 2θ and azimuthal angle [8]. For the data used in this project,

the detector was calibrated using lanthanum hexaboride (LaB6) 660a and 674b cerium oxide

powder standards that were obtained from the National Institute for Standards and Technology

(NIST) [2]. The specific sample-to-detector distance is also obtained from the calibration with

the powder standards. These parameters are then used to integrate the images.

Once calibration is done, multiple images for each sample were summed and integrated using

GSAS II. The limits for integration were the inner and outer 2θ angles and the azimuthal angle.

Figure 2.2 shows these limits for a measurement that consists of multiple detectors. The 2θ angle

corresponds to the radially outward direction on the detector while the azimuthal angle is the

angle in the φ direction or the angle that sweeps across the detectors. Once the integrations are

done, they are exported so that they can be used in PDFgetX3 to get a PDF [9]. The exported file

is a text file that contains a header and two columns of data. The first column is the scattering

angle, 2θ, in degrees, and the second column contains the corresponding intensities at those

angles normalized per unit solid angle [8].



Methodology 10

Figure 2.2: This is the output image of two detectors. Each detector has limits of integration. The red lines
are the upper 2θ limits while the purple lines and green dotted lines are the azimuthal angle limits. The
figure is taken from Thomas Bsaibes; "Radial-Distribution Function of a Transparent Conducting Oxide";
DePaul University, 2017 [2].

2.3 PDFgetX3

PDFgetX3 calculates the reduced-structure function, Eq. 1.5. The reduced-structure function

is easier to calculate than the standard structure function given by Eq. 2.11 where Ic (Q) is the

coherent scattering and f (Q) is the atomic scattering factor. The angled brackets indicate an

average [9].

S (Q) = Ic (Q)−〈
f (Q)2

〉+〈
f (Q)

〉2〈
f (Q)

〉2 (2.11)

The reduced-structure function is Fourier transformed into real space so that a PDF is created.

The Fourier transform is done from a Qmi n close to 0Å−1 to a Qmax close to 20Å−1. A wide range

of Q values is used in the Fourier transform so that a high-resolution PDF can be obtained [2].

The output of PDFgetX3 is a text file that contains a header and two columns of data. The first

column is a distance in Å and the second column contains the corresponding PDF values in
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Å−2.

PDFgetX3 does several corrections to the experimental data. It corrects for air scattering and the

contribution due to the sample holder with the bg scale parameter. The program also smooths

the data with the r pol y parameter, which is the r -limit for the maximum frequency in the

reduced-structure function correction polynomial [9].

All sample data were normalized so that the peaks reached the same height in intensity at ∼ 2.2Å,

corresponding to the first shell. The parameters were adjusted so that the height of the first peak

was around 3Å−2. This was done in order to be able to compare values obtained across different

samples. The rpol y value used was 1.49Å unless the peak was not able to attain 3Å−2 in which

case the value was lowered. Figure 2.3 shows a session of PDFgetX3 and the resulting graphs with

multiple samples overlaid on top of each other to show how the peaks match up at ∼ 2.2Å.

Figure 2.3: This is a session from PDFgetX3. The top graph is the reduced-structure function while the
bottom graph is the PDF. The different colored curves correspond to different samples plotted on top
of each other. The peaks were overlapped at ∼ 2.2Å in order to normalize them to each other. Peaks
correspond to coordination shells, and information about the local atomic structure can be obtained from
the peak position, integrated area, and width of each peak.
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2.4 MATLAB

MATLAB scripts were used to convert the PDFs created by PDFgetX3 to RDFs. This was done

by utilizing Eq. 1.7 and Eq. 1.9. Eq. 1.7 can be rewritten as Eq. 2.12 so that we can solve for g (r )

since we know G(r ) from PDFgetX3.

g (r ) = G (r )

4πrρ0
+1 (2.12)

After conversion to an RDF, the data is fitted in the Curve Fitting App, which gives parameters a,

b, and c. These parameters correspond to the gaussian function given by Eq. 2.13.

f (x) = ae−( x−b
c )2

(2.13)

Here a is the amplitude, b is the centroid, and c is related to the peak width [10]. MATLAB

outputs a 95% confidence interval in its Curve Fitting App for each fitting allowing for easier

error propagation.

The parameter b corresponds to the bond length. Eq. 2.14 was used to obtain the FWHM from

the c parameter.

FWHM = 2
√

2ln(2)
cp
(2)

(2.14)

The error also has to be propagated for the FWHM, which results in Eq. 2.15.

FWHMer r or = dFWHM

dc
cer r or = 2

√
2ln(2)

cer r orp
(2)

(2.15)

The variable cer r or is the minimum or maximum c value obtained from the Curve Fitting App.

This equation is identical to Eq. 2.14 except that we have a different variable.

The integrated area was calculated using Eq. 2.16 which is obtained through integrating Eq. 2.13.

In the equation, y is the integrated area.

y =
∫ ∞

−∞
ae−( x−b

c )2
d x (2.16)
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Once the integrated area was calculated, the error was propagated. Using the error that MATLAB

provides in its gaussian fits, the error for each integrated area was calculated using the following

equations:

∆a = a −aer r or (2.17)

∆b = b −ber r or (2.18)

∆c = c − cer r or (2.19)

y =
∫ ∞

−∞

√√√√√√√
2ae

[
−

(
x−b

c

)2
]

(x −b)∆b

c2


2

+

2ae

[
−

(
x−b

c

)2
]

(x −b)2∆c

c3


2

+
[

e

[
−

(
x−b

c

)2
]
∆a

]2

d x

(2.20)

Here aer r or , ber r or , and cer r or are either the upper or lower errors given by the gaussian fit in

MATLAB. The difference between the calculated value and the error are given by ∆a, ∆b, and

∆c.

When two gaussians were used, the error was calculated using:

y =
√(∣∣y1 − y1,er r or

∣∣)2 + (∣∣y2 − y2,er r or
∣∣)2 (2.21)

where a subscript of one indicates gaussian one and a subscript of two indicates gaussian

two.

These equations were used in order to develop a code that can automatically calculate these

values. The code is explained in the next chapter in greater detail.
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Chapter 3

Implementation of the Code

3.1 MATLAB

The first code called Gtog(), which can be found in Appendix 7.1.1, converts the PDF to an RPDF

using Eq. 2.12. The next code used is called gtoR(), which can be found in Appendix 7.1.2, which

converts the RPDF to an RDF using Eq. 1.9. Figure 3.1 shows the original PDF, Figure 3.1a, and

the PDF converted to an RDF, Figure 3.1b.

(a) Original PDF before conversion to an RDF. (b) RDF after conversion from a PDF.

Figure 3.1: Conversion from PDF to RDF.

A code called savevariables(), which can be found in Appendix 7.1.3, is used next in order to

save variables r and G(r ) produced by gtoR(). These variables are saved to the workspaces so

that they can be used in the Curve Fitting App in MATLAB. In the Curve Fitting App, we use

gaussians to fit the first, second, and third shells and sometimes the fourth shell, if needed. Three

gaussians are used for the first shell. Two peaks are used for the second and third shells, which

are fitted together because the peaks are formed through the convolution of two gaussians. If

there appears to be a fourth peak that is of interest, then shells two, three, and four are fitted

together using three gaussians. In the Curve Fitting App, data points can be included or excluded.

This allows for the fitting of individual peaks of interest. When fitting a shell or a set of shells,

data points that do not contribute to the shell or shells are excluded. Figure 3.2 shows a fitting of

the second and third shells.
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Figure 3.2: This is a session from the Curve Fitting App used to fit shells two and three. The red stars are
excluded data points while the black dots are the included data points. The blue line is the convolution of
two gaussians which are used to fit these shells.

As Figure 3.2 shows, it is sometimes necessary to exclude data points on the sides or in the

middle. This is done in order to match up the peak with the gaussian as well as possible so that

the bond length will match up with the peak. The overcalculation in the integrated area caused

by excluding these points can be corrected while the bond length not matching up is harder to

correct. The second and third shell peaks were more convoluted in amorphous samples than in

crystalline samples. In all samples, convolution could be seen in the peaks.

The code filetoarray(), which appears in Appendix 7.1.4, converts the MATLAB parameters from

the Curve Fitting App to a matrix. The output from the App needs to be pasted into a text file and

then filetoarray() has to be called to obtain the matrix used in later codes.

For the first shell, a different integrating analysis was also used, but the method of using gaussians

gave better results. In this other method, the peak area was found by integrating the area

underneath the curve created by the data points from ∼ 1.7Å to ∼ 2.7Å depending on the sample.

The bond length corresponded to the center of mass of this integrated area, and the FWHM was

obtained by finding the range from side to side on the peak at halfway up the peak. Figure 3.3

shows an example of the center of mass, FWHM, and integrated area. This method did not give

numbers consistent with EXAFS [5]. The error was also more difficult to propagate and estimate

in this method.
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Figure 3.3: This is a fit of the first peak where the blue dots correspond to the raw data, and the blue line
is those dots connected. The red dot corresponds to the center of mass, and the green line corresponds to
the FWHM of the peak.

3.1.1 Bond Length

The bond length was obtained from the parameter b of the gaussian fit of the Curve Fitting App.

Error propagation, in this case, is fairly easy, since MATLAB outputs confidence interval in its

Curve Fitting App.

The bond length did not always match with what was expected. The gaussians chosen by

MATLAB would sometimes be wrong or would make the integrated area negative, which does

not make physical sense. Figure 3.4 shows an instance where MATLAB initially fitted the peaks

incorrectly.
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Figure 3.4: This is a fit of a sample’s first shell. The blue dots correspond to the raw data. The green
fit corresponds to the convolution of the gaussians. The red, black, and pink curves correspond to the
individual peaks used in the fit. The pink curve gives a negative area and the black curve overcalculates
the main peak and shifts the bond length to the right.

This was corrected manually by setting where MATLAB looks for the peaks in the Curve Fitting

App. The initial values for a, b, and c can be set or fixed. In this case, the initial value was set,

and MATLAB was then able to fit the peaks better and with more realistic values that would

not produce a negative integrated area. Figure 3.5 shows the same curve after setting the initial

values, which results in a better fit.
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Figure 3.5: This is a fit of a sample’s first shell. The blue dots correspond to the raw data. The green
fit corresponds to the convolution of the gaussians. The red, black, and pink curves correspond to the
individual peaks used in the fit. The black fit corresponds to the first peak which is used to get the bond
length.

3.1.2 Full Width at Half Maximum

The full width at half maximum was obtained from the Gaussian fit of the Curve Fitting App by

using the variable c and Eq. 2.14. The FWHM is calculated just for the peak of interest. Figure 3.6

shows the FWHM calculated for the second and third shells.
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Figure 3.6: This is a fit of the second and third shells where the blue dots correspond to the raw data. The
red curve is the second shell gaussian and the green curve is the third shell gaussian. The black lines
correspond to the FWHM.

The FWHM is a good measure of how much the bond lengths vary. A smaller FWHM value

corresponds to more uniform bond lengths in the structure. Once the FWHM was calculated,

the error was propagated using Eq. 2.15. Larger FWHM values were obtained for amorphous

samples. As the crystallinity in the samples increased, the peaks became narrower, due to an

increased order in the atomic structure.

3.1.3 Integrated Area

The integrated area was found by calculating the area of the individual gaussian peaks. Figure

3.7 shows how the first shell was fitted using gaussians. In the first shell, two approaches were

used to get the integrated area. The first approach used only the main middle peak, and the

second approach used the strongest middle peak and the peak to the left. The second approach

gave numbers that were more consistent with previous EXAFS experiments that found that the

coordination number for the first In-O shell was around six [5].
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Figure 3.7: This is a fit of a sample’s first shell. The blue dots correspond to the raw data. The green
fit corresponds to the convolution of the gaussians. The red, black, and pink curves correspond to the
individual peaks used in the fit. The black fit corresponds to the first peak which is used to get the bond
length and FWHM. The area under the black fit and red fit are used to get the integrated area.

For the second and third shells, one gaussian per shell was used to find the integrated area. For

some samples, the fit did not perfectly pass through all the data points on the left of the second

shell and/or in-between the second and third shells, leaving a gap which can be seen in Figure

3.8. Therefore, a method was developed to correct this error. For the overcalculation on the

left of the second shell, the overcalculated area was calculated and then subtracted from the

second shell. For the overcalculation in-between the second and third shells, the intersection

point of the two gaussians was found first. This point was used to decide what percentage of the

overcalculated area should be subtracted from each gaussian. The overcalculation to the left of

the intersection point was subtracted from the gaussian under the second shell while everything

to the right was subtracted from the gaussian under the third shell. This gives a more accurate

value for the integrated area for each shell.
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Figure 3.8: This is a fit of a sample’s second (red fit) and third (green fit) shells. The blue dots correspond
to the raw data. The black fit corresponds to the convolution of the gaussians. The blue dots and black
fit show the gap between the fit and experimental data. The red fit and green fit show the individual
gaussians used to find the FWHM, bond length, and integrated area.

The integrated area was calculated using Eq. 2.16, and the error was propagated using 2.20 when

one gaussian was used and 2.21 when two gaussians were used.

When the area was subtracted the error was propagated using percentage errors. The percentage

difference in the error of the integrated area divided by original integrated area was calculated

first. This percentage was then multiplied by the calculated subtracted area to get the error in

the subtracted area.

In MATLAB, a script was created to automatically find the integrated area and propagate the

error. Three different codes were created to account for the different situations. The first code

called split(), found in Appendix 7.4.1, finds the integrated area and propagates the error when

there is no overcalculation. The second code called GaussianAddition(), in Appendix 7.4.4, finds

the integrated area of two gaussians, adds them together, and propagates the error. The last code

called Subtractanderror(), found in Appendix 7.4.5, finds the integrated area of the second and

third shells, subtracts the overcalculated area, and propagates the errors. Each code saves all the

important values to a text file, such as integrated area and gaussian parameter values. This was
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done so that these values can be copied to an excel file. These three codes call GaussianArea()

and GaussianArea1() to calculate the integrated areas once all the preprocessing is done. These

codes can be seen in Appendix 7.4.2 and Appendix 7.4.3 respectively.

3.1.4 Graphing

The data collected and analyzed have to be graphed for interpretation, so a set of codes were

developed to plot all graphs needed in one run. The analyzed data, which include bond length,

FWHM, and integrated area, are kept in an excel file. This allows for data to be easily updated

or viewed if necessary. The graphing code reads from this excel file. There is a main function

that calls sub graphing functions which can also be called on their own. This main function

plots all-new graphs or a specific subsection of the data can be graphed by calling individual

functions. There are three main graphing code categories for each peak. The categories are bond

length, FWHM, and integrated area. Each is then separated into peak one, peak two, and so forth

for all peaks that are being examined. The excel file contains the best-fit values along with the

minimum and maximum values that are acquired through error propagation.

There are multiple graphs created by each function, and each graph contains in-plane, out-of-

plane, and average data along with error bars for each. In some cases, the upper and lower error

bars are different. Surf plots are also created when two different variables are being studied at

the same time, for example, temperature and incident angle. The codes automatically create

filenames depending on data in the excel files and save the graphs as PNGs (Portable Network

Graphics) and FIGs (MATLAB figure files). This is useful when hundreds of graphs need to be

made at one time. The graphing codes automate graphing and save the user time.
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Conclusion

PDF analysis reveals the local atomic structure of both amorphous and crystalline samples.

This analysis of TCOs help in the quest to find better materials with improved properties, such

as electron mobility and mechanical flexibility. A better methodology to analyze PDF data of

TCO samples was developed to speed up the analysis of multiple samples. This methodology

is currently being used to study different series of amorphous and crystalline TCOs. A clear

procedure allowed for the automation of certain parts of the analysis through coding making

it easier to compare different TCOs and see trends in the data. Codes were developed to easily

calculate the FWHM, bond length, and coordination number. The codes have been used to

analyze the local atomic structure in amorphous and crystalline TCO samples. Trends and

differences in bond lengths and coordination numbers can be correlated to measured electrical

properties. The developed procedure will help in the analysis of further doped IO thin films. This

analysis along with future samples studied can help guide the synthesis of indium-based TCOs

with improved properties. The methodology developed in this project will be applied to several

ongoing and future projects involving different types of TCOs.
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Appendix

7.1 Conversion

7.1.1 Gtog Function

function output = Gtog(PDF,avgNumDens)

%Converts from G to g

%output is r and g

%PDF = Data output of pdfgetx3, which is G(r) file

%avgNumDens = average number density of sample

pdf = fopen(PDF);

data = textscan(pdf,’%f %f’,’HeaderLines’,28); %data is a 1 by 2 cell array

r = data1,1; %data1,1 = r values

G = data1,2; %data1,2 = intensities

g = (G./(4.*pi.*r.*avgNumDens))+1;

output = [r,g];

fclose(’all’);

end

7.1.2 gtoR Function

function output = gtoR(input,avgNumDens)

%Converts PDF g(r) to RDF R(r)

%output is g and R

%input = Data output of pdfgetx3, which is G(r) file

%avgNumDens = average number density of sample

g = Gtog(input,avgNumDens);%Calls Gtog function

R = 4.*pi.*g(:,1).^2.*avgNumDens.*g(:,2);%Converts PDF g(r) to RDF R(r)

output = [g(:,1),R];

end
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7.1.3 savevariables Function

function savevariables(input,avgNumDens)

%Saves g and R for use in Curve Fitting app

%No output

%input = Data output of pdfgetx3, which is G(r) file

%avgNumDens = average number density of sample

[g,R]=gtoR(input,avgNumDens);%Calls gtoR function

R(1,1)=0; %Reassigns first value from NaN to 0

%% Assign for curvefitting

assignin(’base’,’x’,(g(:,1)));%Assigns g to x in workspace

assignin(’base’,’y’,(R));%Assigns R to y in workspace

end

7.1.4 filetoarray Function

function finaltext=filetoarray(file)

%put file of gaussian variables a,b,c into array

%finaltext(:,1) is values,finaltext(:,2) is mins, finaltext(:,3) is maxes

%file = text file with gaussian variables a,b,c from Curve Fitting app

fileID = fopen(file);

text1 = textscan(fileID,’%q’);

fclose(fileID);

text = [text1:];

text=text.’;

text = strrep(text,’(’,’’);

text = strrep(text,’)’,’’);

text = strrep(text,’,’,’’);

text(strncmp( text, ’=’,1 )) = [];

text(strncmp( text, ’a’,1 )) = [];

text(strncmp( text, ’b’,1 )) = [];

text(strncmp( text, ’c’,1 )) = [];

text=reshape(text,3,length(text)/3);

finaltext=text.’;

end
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7.2 Bond Length

7.2.1 BL Function

function BL(array,minarray,maxarray)

%prints out BL with minimum and maximum values

%array = gaussian variables a,b,c from Curve Fitting app

%minarray = minimum gaussian variables a,b,c from Curve Fitting app

%maxarray = maximum gaussian variables a,b,c from Curve Fitting app

for i=1:length(array)%go through all Gaussians

if(mod(i,3)==2)

disp(’BL’);

disp(array(i));

disp(’BLmin’);

disp(minarray(i));

disp(’BLmax’);

disp(maxarray(i));

end

end

end

7.3 Full Width at Half Max

7.3.1 FWHM Function

function FWHM(array,minarray,maxarray)

%prints out FWHM with minimum and maximum values

%array = gaussian variable c from Curve Fitting app

%minarray = minimum gaussian variable c from Curve Fitting app

%maxarray = maximum gaussian variable c from Curve Fitting app

for i=1:length(array)%go through all Gaussians

if(mod(i,3)==0)

%calculate fwhm from c

fwhm=2*sqrt(2*log(2))*(array(i)/sqrt(2));

fwhmmin=2*sqrt(2*log(2))*(minarray(i)/sqrt(2));

fwhmmax=2*sqrt(2*log(2))*(maxarray(i)/sqrt(2));
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disp(’FWHM’);

disp(fwhm);

disp(’FWHMmin’);

disp(fwhmmin);

disp(’FWHMmax’);

disp(fwhmmax);

end

end

end

7.4 Integrated Area

7.4.1 split Function

function split(file,llength)

%finds the area with minimum and maximum areas for error

%file = text file with gaussian variables a,b,c from Curve Fitting app

%llength = array of how many Gaussians fitted per group with max of 3

fileID = fopen(file);

text1 = textscan(fileID,’%q’);

fclose(fileID);

otext = [text1:];

%below gets rid of unnecessary characters in text file

otext=otext.’;

otext = strrep(otext,’(’,’’);

otext = strrep(otext,’)’,’’);

otext = strrep(otext,’,’,’’);

otext(strncmp( otext, ’=’,1 )) = [];

otext(strncmp( otext, ’a’,1 )) = [];

otext(strncmp( otext, ’b’,1 )) = [];

otext(strncmp( otext, ’c’,1 )) = [];

otext=reshape(otext,3,length(otext)/3);

textt=otext.’;

previndex=1;

for ll=1:length(llength)%go through all groups of Gaussians
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currindex=(llength(ll))*3+previndex-1;

text=textt(previndex:currindex,:);

previndex=currindex+1;

%put in order

sort=zeros(1,length(text)/3);

for i=1:length(text)

if(mod(i,3)==2)

sort(((i+1)/3))=strjoin(string(cell2mat(text(i))));

end

end

sort=sort.’;

sort=sortrows(sort);

sort=sort.’;

text1=zeros(length(text),3);

for i=1:length(text)

text1(i,1)=strjoin(string(cell2mat(text(i,1))));

text1(i,2)=strjoin(string(cell2mat(text(i,2))));

text1(i,3)=strjoin(string(cell2mat(text(i,3))));

end

sorted=zeros(length(text),3);

k=1;

for j=1:length(sort)

[row,col] = find(double(text1)==sort(j));

col=col(1);

row=row(1);

sorted(k,1)=text1(row-1,col);

sorted(k+1,1)=text1(row,col);

sorted(k+2,1)=text1(row+1,col);

sorted(k,2)=text1(row-1,col+1);

sorted(k+1,2)=text1(row,col+1);

sorted(k+2,2)=text1(row+1,col+1);

sorted(k,3)=text1(row-1,col+2);

sorted(k+1,3)=text1(row,col+2);

sorted(k+2,3)=text1(row+1,col+2);

k=k+3;

end
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if llength(ll)==2

sorted(7,:)=0;

sorted(8,:)=0;

sorted(9,:)=0;

llength(ll)=llength(ll)+1;

end

if llength(ll)==1

sorted(4,:)=0;

sorted(5,:)=0;

sorted(6,:)=0;

llength(ll)=llength(ll)+1;

end

%call GaussianArea to calculate areas

GaussianArea(sorted(:,1),sorted(:,2),sorted(:,3));

fileID = fopen(’Area.txt’, ’a’);%text file for area

fprintf(fileID,’\n’);%add new line to separate next area written

fclose(fileID);

end

end

7.4.2 GaussianArea Function

function GaussianArea(array,minarray,maxarray)

%calculates the area with minimum and maximum areas for error

%array = gaussian variables a,b,c from Curve Fitting app

%minarray = minimum gaussian variables a,b,c from Curve Fitting app

%maxarray = maximum gaussian variables a,b,c from Curve Fitting app

llength=3;

for i=1:length %setting variables from arrays

k=i*3;

if k==3

a1=array(k-2);

a1min=minarray(k-2);

a1max=maxarray(k-2);

b1=array(k-1);

b1min=minarray(k-1);
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b1max=maxarray(k-1);

c1=array(k);

c1min=minarray(k);

c1max=maxarray(k);

elseif k==6

a2=array(k-2);

a2min=minarray(k-2);

a2max=maxarray(k-2);

b2=array(k-1);

b2min=minarray(k-1);

b2max=maxarray(k-1);

c2=array(k);

c2min=minarray(k);

c2max=maxarray(k);

else

a3=array(k-2);

a3min=minarray(k-2);

a3max=maxarray(k-2);

b3=array(k-1);

b3min=minarray(k-1);

b3max=maxarray(k-1);

c3=array(k);

c3min=minarray(k);

c3max=maxarray(k);

end

end

for ii=1:length(c2max)

%% Find minimum and maximum area with error propagation

deltaa1min=a1(ii)-a1min(ii);

deltab1min=b1(ii)-b1min(ii);

deltac1min=c1(ii)-c1min(ii);

f = @(x) sqrt((((2*a1(ii).*exp(-((x-b1(ii))./c1(ii)).^2).*...

(x-b1(ii)))./(c1(ii).^2)).*deltab1min).^2+(((2*a1(ii).*...

exp(-((x-b1(ii))./c1(ii)).^2).*(x-b1(ii)).^2)./(c1(ii).^3))*...

deltac1min).^2+deltaa1min.*exp(-((x-b1(ii))./c1(ii)).^2));

% Peak 1 minimum area
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area1min=integral(f,-Inf,Inf);

deltaa1max=a1max(ii)-a1(ii);

deltab1max=b1max(ii)-b1(ii);

deltac1max=c1max(ii)-c1(ii);

f = @(x) sqrt((((2*a1(ii).*exp(-((x-b1(ii))./c1(ii)).^2).*...

(x-b1(ii)))./(c1(ii).^2)).*deltab1max).^2+(((2*a1(ii).*exp(-((x-...

b1(ii))./c1(ii)).^2).*(x-b1(ii)).^2)./(c1(ii).^3))*deltac1max)....

^2+deltaa1max.*exp(-((x-b1(ii))./c1(ii)).^2));

% Peak 1 maximum area

area1max=integral(f,-Inf,Inf);

deltaa2min=a2(ii)-a2min(ii);

deltab2min=b2(ii)-b2min(ii);

deltac2min=c2(ii)-c2min(ii);

f = @(x) sqrt((((2*a2(ii).*exp(-((x-b2(ii))./c2(ii)).^2).*(x-...

b2(ii)))./(c2(ii).^2)).*deltab2min).^2+(((2*a2(ii).*exp(-((x-...

b2(ii))./c2(ii)).^2).*(x-b2(ii)).^2)./(c2(ii).^3))*deltac2min)....

^2+deltaa2min.*exp(-((x-b2(ii))./c2(ii)).^2));

% Peak 2 minimum area

area2min=integral(f,-Inf,Inf);

deltaa2max=a2max(ii)-a2(ii);

deltab2max=b2max(ii)-b2(ii);

deltac2max=c2max(ii)-c2(ii);

f = @(x) sqrt((((2*a2(ii).*exp(-((x-b2(ii))./c2(ii)).^2).*(x-...

b2(ii)))./(c2(ii).^2)).*deltab2max).^2+(((2*a2(ii).*exp(-((x-...

b2(ii))./c2(ii)).^2).*(x-b2(ii)).^2)./(c2(ii).^3))*deltac2max)....

^2+deltaa2max.*exp(-((x-b2(ii))./c2(ii)).^2));

% Peak 2 maximum area

area2max=integral(f,-Inf,Inf);

deltaa3min=a3(ii)-a3min(ii);

deltab3min=b3(ii)-b3min(ii);

deltac3min=c3(ii)-c3min(ii);

f = @(x) sqrt((((2*a3(ii).*exp(-((x-b3(ii))./c3(ii)).^2).*(x-...

b3(ii)))./(c3(ii).^2)).*deltab3min).^2+(((2*a3(ii).*exp(-((x-...

b3(ii))./c3(ii)).^2).*(x-b3(ii)).^2)./(c3(ii).^3))*deltac3min)....

^2+deltaa3min.*exp(-((x-b3(ii))./c3(ii)).^2));

% Peak 3 minimum area
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area3min=integral(f,-Inf,Inf);

deltaa3max=a3max(ii)-a3(ii);

deltab3max=b3max(ii)-b3(ii);

deltac3max=c3max(ii)-c3(ii);

f = @(x) sqrt((((2*a3(ii).*exp(-((x-b3(ii))./c3(ii)).^2).*(x-...

b3(ii)))./(c3(ii).^2)).*deltab3max).^2+(((2*a3(ii).*exp(-((x-...

b3(ii))./c3(ii)).^2).*(x-b3(ii)).^2)./(c3(ii).^3))*deltac3max)....

^2+deltaa3max.*exp(-((x-b3(ii))./c3(ii)).^2));

% Peak 3 maximum area

area3max=integral(f,-Inf,Inf);

% Find area

originalareaP1=GaussianArea1([a1(ii),b1(ii),c1(ii)]);

originalareaP2=GaussianArea1([a2(ii),b2(ii),c2(ii)]);

originalareaP3=GaussianArea1([a3(ii),b3(ii),c3(ii)]);

if isnan(area3min)

area3min=0;

end

if isnan(area3max)

area3max=0;

end

fileID = fopen(’Area.txt’, ’a’);

fprintf(fileID,strcat(num2str(a1(ii),’%.4f’),’,’,num2str(b1(ii),...

’%.4f’),’,’,num2str(c1(ii),’%.4f’),’,’));

fprintf(fileID,strcat(num2str(a2(ii),’%.4f’),’,’,num2str(b2(ii),...

’%.4f’),’,’,num2str(c2(ii),’%.4f’),’,’));

fprintf(fileID,strcat(num2str(a3(ii),’%.4f’),’,’,num2str(b3(ii),...

’%.4f’),’,’,num2str(c3(ii),’%.4f’),’,’));

fprintf(fileID,’, ,’);

fprintf(fileID,num2str(originalareaP1),’%.4f’);% Peak 1 area

fprintf(fileID,’,’);

fprintf(fileID,num2str(originalareaP2),’%.4f’);% Peak 2 area

fprintf(fileID,’,’);

fprintf(fileID,num2str(originalareaP3),’%.4f’);% Peak 3 area

fprintf(fileID,’, ,’);

fprintf(fileID,strcat(num2str(a1min(ii),’%.4f’),’,’,num2str(...

b1min(ii),’%.4f’),’,’,num2str(c1min(ii),’%.4f’),’,’));
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fprintf(fileID,strcat(num2str(a2min(ii),’%.4f’),’,’,num2str(...

b2min(ii),’%.4f’),’,’,num2str(c2min(ii),’%.4f’),’,’));

fprintf(fileID,strcat(num2str(a3min(ii),’%.4f’),’,’,num2str(...

b3min(ii),’%.4f’),’,’,num2str(c3min(ii),’%.4f’)));

fprintf(fileID,’, ,’);

% Peak 1 min area

fprintf(fileID,num2str(originalareaP1-area1min),’%.4f’);

fprintf(fileID,’,’);

% Peak 2 min area

fprintf(fileID,num2str(originalareaP2-area2min),’%.4f’);

fprintf(fileID,’,’);

% Peak 3 min area

fprintf(fileID,num2str(originalareaP3-area3min),’%.4f’);

fprintf(fileID,’, ,’);

fprintf(fileID,strcat(num2str(a1max(ii),’%.4f’),’,’,num2str(...

b1max(ii),’%.4f’),’,’,num2str(c1max(ii),’%.4f’),’,’));

fprintf(fileID,strcat(num2str(a2max(ii),’%.4f’),’,’,num2str(...

b2max(ii),’%.4f’),’,’,num2str(c2max(ii),’%.4f’),’,’));

fprintf(fileID,strcat(num2str(a3max(ii),’%.4f’),’,’,num2str(...

b3max(ii),’%.4f’),’,’,num2str(c3max(ii),’%.4f’)));

fprintf(fileID,’, ,’);

% Peak 1 max area

fprintf(fileID,num2str(originalareaP1+area1max),’%.4f’);

fprintf(fileID,’,’);

% Peak 2 max area

fprintf(fileID,num2str(originalareaP2+area2max),’%.4f’);

fprintf(fileID,’,’);

% Peak 3 max area

fprintf(fileID,num2str(originalareaP3+area3max),’%.4f’);

fprintf(fileID,’, ,’);

fclose(fileID);

end

end
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7.4.3 GaussianArea1 Function

function area=GaussianArea1(array)

%calculates the area of Gaussian

%outputs an area

%array = gaussian variables a,b,c from Curve Fitting app

a=array(1);

b=array(2);

c=array(3);

f = @(x) a.*exp(-((x-b)./c).^2);

area=integral(f,-Inf,Inf);

k=k+3;

end

7.4.4 GaussianAddition Function

function GaussianAddition()

%Adds two Gaussians together and propagates error

%prints out area with minimum and maximum values

y= xlsread(’filename’,’Sheet’,’xlRange’);

y1= xlsread(’filename’,’Sheet’,’xlRange’);

ymax= xlsread(’filename’,’Sheet’,’xlRange’);

y1max= xlsread(’filename’,’Sheet’,’xlRange’);

ymin= xlsread(’filename’,’Sheet’,’xlRange’);

y1min= xlsread(’filename’,’Sheet’,’xlRange’);

y(isnan(y)) = [];

y1(isnan(y1)) = [];

ymin(isnan(ymin)) = [];

y1min(isnan(y1min)) = [];

ymax(isnan(ymax)) = [];

y1max(isnan(y1max)) = [];

ytot=y+y1;

ytotmin=sqrt((y-ymin).^2+(y1-y1min).^2);%propagation of error

ytotmax=sqrt((ymax-y).^2+(y1max-y1).^2);%propagation of error

disp(’Area’);

disp(ytot);
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disp(’Areamin’);

disp(ytotmin);

disp(’Areamax’);

disp(ytotmax);

end

7.4.5 Subtractanderror Function

function Subtractanderror(avgNumDens)

%subtracts overcalculation in gaussians and propagates error

%avgNumDens = average number density of sample

%% Read in data

% file name

[~,filestemp,~]= xlsread(’filename’,’Sheet’,’xlRange’);

filestemp=cell2str(filestemp);

files=filestemp([3:12,18:26,32:38,40,46:52,54],:);

types=filestemp([1,16,30,44],:);

% coefficients a1,b1,c1,a2,b2,c2

a1=xlsread(’filename’,’Sheet’,’xlRange’);

a1(isnan(a1)) = [];

b1=xlsread(’filename’,’Sheet’,’xlRange’);

b1(isnan(b1)) = [];

c1=xlsread(’filename’,’Sheet’,’xlRange’);

c1(isnan(c1)) = [];

a2=xlsread(’filename’,’Sheet’,’xlRange’);

a2(isnan(a2)) = [];

b2=xlsread(’filename’,’Sheet’,’xlRange’);

b2(isnan(b2)) = [];

c2=xlsread(’filename’,’Sheet’,’xlRange’);

c2(isnan(c2)) = [];

% Min coefficients a1,b1,c1,a2,b2,c2

a1min=xlsread(’filename’,’Sheet’,’xlRange’);

a1min(isnan(a1min)) = [];

b1min=xlsread(’filename’,’Sheet’,’xlRange’);

b1min(isnan(b1min)) = [];

c1min=xlsread(’filename’,’Sheet’,’xlRange’);



Appendix 38

c1min(isnan(c1min)) = [];

a2min=xlsread(’filename’,’Sheet’,’xlRange’);

a2min(isnan(a2min)) = [];

b2min=xlsread(’filename’,’Sheet’,’xlRange’);

b2min(isnan(b2min)) = [];

c2min=xlsread(’filename’,’Sheet’,’xlRange’);

c2min(isnan(c2min)) = [];

% Max coefficients a1,b1,c1,a2,b2,c2

a1max=xlsread(’filename’,’Sheet’,’xlRange’);

a1max(isnan(a1max)) = [];

b1max=xlsread(’filename’,’Sheet’,’xlRange’);

b1max(isnan(b1max)) = [];

c1max=xlsread(’filename’,’Sheet’,’xlRange’);

c1max(isnan(c1max)) = [];

a2max=xlsread(’filename’,’Sheet’,’xlRange’);

a2max(isnan(a2max)) = [];

b2max=xlsread(’filename’,’Sheet’,’xlRange’);

b2max(isnan(b2max)) = [];

c2max=xlsread(’filename’,’Sheet’,’xlRange’);

c2max(isnan(c2max)) = [];

for ii=1:length(c2max)

%% Subtract Area

if ii<11

type=types(1,:);

elseif ii<20

type=types(2,:);

elseif ii<28

type=types(3,:);

else

type=types(4,:);

end

strfile=(strcat(’filepath/’,type,’/’,files(ii,:)));

g = Gtog(strfile,avgNumDens);%Calls Gtog function input is G(r) file

R = 4.*pi.*g(:,1).^2.*avgNumDens.*g(:,2);%Converts PDF g(r) to RDF R(r)

R(1,1)=0;

gg=g(:,1);
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h= @(x) (a1(ii).*exp(-((x-b1(ii))./c1(ii)).^2))-(a2(ii).*exp(-((x...

-b2(ii))./c2(ii)).^2));

firstzero=fzero(h,3.5); %intersection point

xs2 = linspace(3,4,1000);

Gauss = (a1(ii).*exp(-((xs2-b1(ii))./c1(ii)).^2))+(a2(ii).*exp(-((xs2...

-b2(ii))./c2(ii)).^2));

[~,y]=findpeaks(R,gg);

[~,ys2]=findpeaks(Gauss*-1,xs2);

%% if not NaN

if ~isnan(firstzero)

for i=1:length(y)

if y(i)>=3.1&&y(i)<3.5

z=y(i);

end

if y(i)>=3.5&&y(i)<4

zz=y(i);

break;

end

end

difpoints=[];

difx=[];

difpoints2=[];

index=1;

for i=2:length(gg)

if(gg(i)>=z && gg(i)<=firstzero)

value=(a1(ii)*exp(-((gg(i)-b1(ii))/c1(ii))^2))+(a2(ii)*exp(-((...

gg(i)-b2(ii))/c2(ii))^2));

if R(i)<value

difpoints(index)=R(i);

difx(index)=gg(i);

difpoints2(index)=value;

index=index+1;

end

end

end

if ~isempty(difx)
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area1=trapz(difx,difpoints);

area2=trapz(difx,difpoints2);

else

area1=0;

area2=0;

end

subtracted1=area2-area1;

% area to subtract from peak 2

% Original area of Peak 2

originalareaP1=GaussianArea1([a1(ii),b1(ii),c1(ii)]);

newarea1=originalareaP1-subtracted1;

difpoints=[];

difx=[];

difpoints2=[];

index=1;

for i=2:length(gg)

if(gg(i)>=firstzero && gg(i)<=zz)

value=(a1(ii)*exp(-((gg(i)-b1(ii))/c1(ii))^2))+(a2(ii)*exp(...

-((gg(i)-b2(ii))/c2(ii))^2));

if R(i)<value

difpoints(index)=R(i);

difx(index)=gg(i);

difpoints2(index)=value;

index=index+1;

end

end

end

if ~isempty(difx)

area1=trapz(difx,difpoints);

area2=trapz(difx,difpoints2);

else

area1=0;

area2=0;

end

subtracted2=area2-area1;

% area to subtract from peak 3
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% Original area of Peak 3

originalareaP2=GaussianArea1([a2(ii),b2(ii),c2(ii)]);

newarea2=originalareaP2-subtracted2;

difpoints=[];

difx=[];

difpoints2=[];

index=1;

for i=2:length(gg)

if(gg(i)>=2 && gg(i)<=z)

value=(a1(ii)*exp(-((gg(i)-b1(ii))/c1(ii))^2))+(a2(ii)*exp(-((...

gg(i)-b2(ii))/c2(ii))^2));

if R(i)<value

difpoints(index)=R(i);

if R(i)<0

difpoints(index)=0;

end

difx(index)=gg(i);

difpoints2(index)=value;

index=index+1;

end

end

end

area1=trapz(difx,difpoints);

area2=trapz(difx,difpoints2);

subtracted3=area2-area1;

% area peak 2

newarea4=newarea1-subtracted3;

%% Find error

deltaa1min=a1(ii)-a1min(ii);

deltab1min=b1(ii)-b1min(ii);

deltac1min=c1(ii)-c1min(ii);

f = @(x) sqrt((((2*a1(ii).*exp(-((x-b1(ii))./c1(ii)).^2).*(x-...

b1(ii)))./(c1(ii).^2)).*deltab1min).^2+(((2*a1(ii).*exp(-((x-...

b1(ii))./c1(ii)).^2).*(x-b1(ii)).^2)./(c1(ii).^3))*deltac1min)...

.^2+deltaa1min.*exp(-((x-b1(ii))./c1(ii)).^2));

area1min=integral(f,-Inf,Inf); % Peak 2 min
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deltaa1max=a1max(ii)-a1(ii);

deltab1max=b1max(ii)-b1(ii);

deltac1max=c1max(ii)-c1(ii);

f = @(x) sqrt((((2*a1(ii).*exp(-((x-b1(ii))./c1(ii)).^2).*(x...

-b1(ii)))./(c1(ii).^2)).*deltab1max).^2+(((2*a1(ii).*exp(-((x...

-b1(ii))./c1(ii)).^2).*(x-b1(ii)).^2)./(c1(ii).^3))*deltac1max)...

.^2+deltaa1max.*exp(-((x-b1(ii))./c1(ii)).^2));

area1max=integral(f,-Inf,Inf); % Peak 2 max

deltaa2min=a2(ii)-a2min(ii);

deltab2min=b2(ii)-b2min(ii);

deltac2min=c2(ii)-c2min(ii);

f = @(x) sqrt((((2*a2(ii).*exp(-((x-b2(ii))./c2(ii)).^2).*(x...

-b2(ii)))./(c2(ii).^2)).*deltab2min).^2+(((2*a2(ii).*exp(-((x...

-b2(ii))./c2(ii)).^2).*(x-b2(ii)).^2)./(c2(ii).^3))*deltac2min)...

.^2+deltaa2min.*exp(-((x-b2(ii))./c2(ii)).^2));

area2min=integral(f,-Inf,Inf); % Peak 3 min

deltaa2max=a2max(ii)-a2(ii);

deltab2max=b2max(ii)-b2(ii);

deltac2max=c2max(ii)-c2(ii);

f = @(x) sqrt((((2*a2(ii).*exp(-((x-b2(ii))./c2(ii)).^2).*(x...

-b2(ii)))./(c2(ii).^2)).*deltab2max).^2+(((2*a2(ii).*exp(-((x...

-b2(ii))./c2(ii)).^2).*(x-b2(ii)).^2)./(c2(ii).^3))*deltac2max)...

.^2+deltaa2max.*exp(-((x-b2(ii))./c2(ii)).^2));

area2max=integral(f,-Inf,Inf); % Peak 3 max

% percentages

area1maxperc=area1max/originalareaP1;

area1minperc=area1min/originalareaP1;

area2maxperc=area2max/originalareaP2;

area2minperc=area2min/originalareaP2;

P2min=-newarea4*area1minperc+newarea4;

P2max=newarea4*area1maxperc+newarea4;

P3min=-newarea2*area2minperc+newarea2;

P3max=newarea2*area2maxperc+newarea2;

%% save

fileID = fopen(’area.txt’, ’a’);

fprintf(fileID,num2str(firstzero)); % intersection
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fprintf(fileID,’, ’);

% left of intersection (area from peak 2)

fprintf(fileID,num2str(subtracted1));

fprintf(fileID,’, ’);

% right of intersection (area from peak 3)

fprintf(fileID,num2str(subtracted2));

fprintf(fileID,’, ,’);

fprintf(fileID,num2str(subtracted3)); % leftside (area from peak 2)

fprintf(fileID,’, ,’);

% Peak 2 min area with subtraction

fprintf(fileID,num2str(P2min));

fprintf(fileID,’, ’);

fprintf(fileID,num2str(newarea4)); % Peak 2 area with subtraction

fprintf(fileID,’, ’);

% Peak 2 max area with subtraction

fprintf(fileID,num2str(P2max));

fprintf(fileID,’, ’);

% Peak 3 min area with subtraction

fprintf(fileID,num2str(P3min));

fprintf(fileID,’, ’);

fprintf(fileID,num2str(newarea2)); % Peak 3 area with subtraction

fprintf(fileID,’, ’);

% Peak 3 max area with subtraction

fprintf(fileID,num2str(P3max));

fprintf(fileID,’\n’);

fclose(fileID);

else

%% if is NaN

for i=1:length(y)

if y(i)>=3.1&&y(i)<3.5

z=y(i);

end

if y(i)>=3.5&&y(i)<4

zz=y(i);

break;

end
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end

firstzero=ys2;

difpoints=[];

difx=[];

difpoints2=[];

index=1;

for i=2:length(gg)

if(gg(i)>=z && gg(i)<=firstzero)

value=(a1(ii)*exp(-((gg(i)-b1(ii))/c1(ii))^2))+(a2(ii)*exp(-((...

gg(i)-b2(ii))/c2(ii))^2));

if R(i)<value

difpoints(index)=R(i);

difx(index)=gg(i);

difpoints2(index)=value;

index=index+1;

end

end

end

if ~isempty(difx)

area1=trapz(difx,difpoints);

area2=trapz(difx,difpoints2);

else

area1=0;

area2=0;

end

subtracted1=area2-area1;

% area to subtract from peak 2

% Original area of Peak 2

originalareaP1=GaussianArea1([a1(ii),b1(ii),c1(ii)]);

newarea1=originalareaP1-subtracted1;

difpoints=[];

difx=[];

difpoints2=[];

index=1;

for i=2:length(gg)

if(gg(i)>=z && gg(i)<=zz)
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value=(a1(ii)*exp(-((gg(i)-b1(ii))/c1(ii))^2))+(a2(ii)*exp(-((...

gg(i)-b2(ii))/c2(ii))^2));

if R(i)<value

difpoints(index)=R(i);

difx(index)=gg(i);

difpoints2(index)=value;

index=index+1;

end

end

end

if ~isempty(difx)

area1=trapz(difx,difpoints);

area2=trapz(difx,difpoints2);

else

area1=0;

area2=0;

end

subtracted2=area2-area1;

% area to subtract from peak 3

% Original area of Peak 3

originalareaP2=GaussianArea1([a2(ii),b2(ii),c2(ii)]);

newarea2=originalareaP2-subtracted2;

difpoints=[];

difx=[];

difpoints2=[];

index=1;

for i=2:length(gg)

if(gg(i)>=2 && gg(i)<=z)

value=(a1(ii)*exp(-((gg(i)-b1(ii))/c1(ii))^2))+(a2(ii)*exp(-((...

gg(i)-b2(ii))/c2(ii))^2));

if R(i)<value

difpoints(index)=R(i);

if R(i)<0

difpoints(index)=0;

end

difx(index)=gg(i);
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difpoints2(index)=value;

index=index+1;

end

end

end

area1=trapz(difx,difpoints);

area2=trapz(difx,difpoints2);

subtracted3=area2-area1;

% area peak 2

newarea4=newarea1-subtracted3;

%% Find error

deltaa1min=a1(ii)-a1min(ii);

deltab1min=b1(ii)-b1min(ii);

deltac1min=c1(ii)-c1min(ii);

f = @(x) sqrt((((2*a1(ii).*exp(-((x-b1(ii))./c1(ii)).^2).*(x...

-b1(ii)))./(c1(ii).^2)).*deltab1min).^2+(((2*a1(ii).*exp(-((x...

-b1(ii))./c1(ii)).^2).*(x-b1(ii)).^2)./(c1(ii).^3))*deltac1min)...

.^2+deltaa1min.*exp(-((x-b1(ii))./c1(ii)).^2));

area1min=integral(f,-Inf,Inf); % Peak 2 min

deltaa1max=a1max(ii)-a1(ii);

deltab1max=b1max(ii)-b1(ii);

deltac1max=c1max(ii)-c1(ii);

f = @(x) sqrt((((2*a1(ii).*exp(-((x-b1(ii))./c1(ii)).^2).*(x...

-b1(ii)))./(c1(ii).^2)).*deltab1max).^2+(((2*a1(ii).*exp(-((x...

-b1(ii))./c1(ii)).^2).*(x-b1(ii)).^2)./(c1(ii).^3))*deltac1max)...

.^2+deltaa1max.*exp(-((x-b1(ii))./c1(ii)).^2));

area1max=integral(f,-Inf,Inf); % Peak 2 max

deltaa2min=a2(ii)-a2min(ii);

deltab2min=b2(ii)-b2min(ii);

deltac2min=c2(ii)-c2min(ii);

f = @(x) sqrt((((2*a2(ii).*exp(-((x-b2(ii))./c2(ii)).^2).*(x...

-b2(ii)))./(c2(ii).^2)).*deltab2min).^2+(((2*a2(ii).*exp(-((x...

-b2(ii))./c2(ii)).^2).*(x-b2(ii)).^2)./(c2(ii).^3))*deltac2min)...

.^2+deltaa2min.*exp(-((x-b2(ii))./c2(ii)).^2));

area2min=integral(f,-Inf,Inf); % Peak 3 min

deltaa2max=a2max(ii)-a2(ii);
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deltab2max=b2max(ii)-b2(ii);

deltac2max=c2max(ii)-c2(ii);

f = @(x) sqrt((((2*a2(ii).*exp(-((x-b2(ii))./c2(ii)).^2).*(x...

-b2(ii)))./(c2(ii).^2)).*deltab2max).^2+(((2*a2(ii).*exp(-((x...

-b2(ii))./c2(ii)).^2).*(x-b2(ii)).^2)./(c2(ii).^3))*deltac2max)...

.^2+deltaa2max.*exp(-((x-b2(ii))./c2(ii)).^2));

area2max=integral(f,-Inf,Inf); % Peak 3 max

% percentages

area1maxperc=area1max/originalareaP1;

area1minperc=area1min/originalareaP1;

area2maxperc=area2max/originalareaP2;

area2minperc=area2min/originalareaP2;

P2min=-newarea4*area1minperc+newarea4;

P2max=newarea4*area1maxperc+newarea4;

P3min=-newarea2*area2minperc+newarea2;

P3max=newarea2*area2maxperc+newarea2;

%% save

fileID = fopen(’area.txt’, ’a’);

fprintf(fileID,num2str(firstzero)); % intersection

fprintf(fileID,’, ’);

% left of intersection (area from peak 2)

fprintf(fileID,num2str(subtracted1));

fprintf(fileID,’, ’);

% right of intersection (area from peak 3)

fprintf(fileID,num2str(subtracted2));

fprintf(fileID,’, ,’);

fprintf(fileID,num2str(subtracted3)); % leftside (area from peak 2)

fprintf(fileID,’, ,’);

% Peak 2 min area with subtraction

fprintf(fileID,num2str(P2min));

fprintf(fileID,’, ’);

fprintf(fileID,num2str(newarea4)); % Peak 2 area with subtraction

fprintf(fileID,’, ’);

% Peak 2 max area with subtraction

fprintf(fileID,num2str(P2max));

fprintf(fileID,’, ’);
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% Peak 3 min area with subtraction

fprintf(fileID,num2str(P3min));

fprintf(fileID,’, ’);

fprintf(fileID,num2str(newarea2)); % Peak 3 area with subtraction

fprintf(fileID,’, ’);

% Peak 3 max area with subtraction

fprintf(fileID,num2str(P3max));

fprintf(fileID,’\n’);

fclose(fileID);

end

end

end


