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As dark matter does not absorb or emit light, its distribution in the universe must be inferred
through indirect effects such as the gravitational lensing of distant galaxies. While most sources are
only weakly lensed, the systematic alignment of background galaxies around a foreground lens can
constrain the mass of the lens which is largely dark matter. In this thesis, I have implemented a
framework to reconstruct lensing mass along lines of sight in a 144 arcmin2 field of the Millennium
Simulation by predicting the weak lensing of 1440 generated source galaxies using a best-case dark
matter halo model in which the halo mass is known. The lensed source ellipticities are character-
ized by the ellipticity-ellipticity and galaxy-mass correlation functions and compared to the same
statistic using the ‘true’ ray-traced ellipticities. In the ellipticity-ellipticity correlation function, I
find that the halo model systematically underpredicts the correlation on scales above 0.2 arcminutes
by a mean NRMSE of 0.22 using an average of 4836 halos per lensing prediction, although this can
be decreased by including more halo contributions. The model predicted galaxy-mass correlation
function is in agreement with the ray-traced statistic on scales from 0.2 to 2 arcminutes but over-
predicts the correlation on scales below 0.2 arcminutes by a mean NRMSE of 0.36 due to strong
lensing effects. Both best-case statistics were found to be well approximated by using only the most
‘relevant’ halos, which on average only needed the 300 and 70 most relevant halos to predict the
correlation functions with a NRMSE below 5% and 10% respectively. The feasibility of using the
halo model to infer hyperparameters of the Millennium Simulation with either maximum likelihood
estimation or approximate Bayesian computation is explored, with preliminary results favoring like-
lihood estimation. Optimization of the framework code has reduced the mean CPU time per lensing
prediction by 59% to 57±8 ms, although this is approximately two orders of magnitude slower than
required for a planned scale-up to a 100 deg2 field. Physical and computational limitations of the
framework are discussed as well as potential improvements for future work.

1 INTRODUCTION

In a universe teeming with galaxies and light, it came
as a shock when 20th century astronomers discovered that
most of the mass in the universe is in fact dark; the ‘nor-
mal’ matter made of atoms that we interact with in ev-
eryday life, called baryonic matter, accounts for less than
20% of the mass in the observable universe [1]. The re-
maining mass takes the form of an exotic dark matter
that does not absorb or emit light rendering it invisi-
ble to our telescopes. While this claim sounds bizarre,
there has been an abundance of indirect evidence in re-
cent decades for the existence of dark matter including
the flattening of galaxy rotation curves [2], velocity dis-
persions of galaxies [3], the power spectrum of the cos-
mic microwave background radiation [1], acoustic peaks
in the correlation function of luminous red galaxies [4],
and galaxy cluster collisions [5].

One of the most successful probes of dark matter has
been gravitational lensing. The path of light from distant
‘background’ galaxies is bent when traveling through re-
gions of space containing large amounts of ‘foreground’
mass. Light from different origins in a source galaxy is
subject to different bending which results in a distortion
of the galaxy image. As the foreground mass is known
to be largely dark matter, gravitational lensing supplies
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a direct constraint on the mass of dark matter in that
region [6].

While the effects of gravitational lensing can be dra-
matic, it is extremely rare for background galaxies to be
perfectly aligned with large foreground mass to produce
strongly lensed images. However, as Tyson et al. postu-
lated in [7] and confirmed in [8], background sources are
also ‘weakly’ lensed by lesser foreground mass nearby the
line of sight (LOS) by what is now called galaxy-galaxy
lensing. As the shape of most galaxies is only distorted
by a few percent, and the intrinsic shape is not known,
weak lensing must be detected statistically using a large
number of sources.

Predicting accurate dark matter mass maps from weak
lensing requires understanding the correlation between
galaxies and dark matter structure. Numerous N-body
simulations have predicted dark matter structure to have
evolved from overdense regions in the early universe into
‘halos’ of virialized matter that eventually collapsed from
self-gravity [9], where galaxies could then form in the
large gravitational potentials of the halos. However,
there is still extensive research being done on the cor-
rect density profile of the halos (isothermal spheres [10],
NFW [11], BMO [12], Einasto [13]), identifying the stel-
lar mass - halo mass relation [14], abundance matching
[15], halo substructure [16], and the lensing by LOS halos
[17] and by dark matter structures not associated with
galaxies [18]. If a model for the distribution of dark mat-
ter in a region of foreground mass can accurately predict
the statistical signal of the weak lensing of background
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sources, then the model can be used on galaxies in ex-
isting sky survey data to extrapolate the amount of dark
matter in the region and construct large-scale maps of
the dark matter in the universe.

Guided by these results, in this thesis I build upon
the work of Collett et al. in [17] to apply a simple dark
matter halo model to reconstruct lensing mass along lines
of sight in the Millennium Simulation in order to predict
the weakly lensed ellipticities of generated background
sources. I then compare my predicted lensed ellipticities
to the ‘true’ lensing calculated by Hilbert et al. in [19]
by ray-tracing light through the Millennium Simulation.
By doing so, I attempt to answer the following questions:

• Under the best possible circumstances of having
noiseless redshifts and halo masses, how accurately
can I reconstruct LOS dark matter mass structures
using a halo model?

• How many halos are needed to make these predic-
tions?

• How feasible is an inference of the Millennium Sim-
ulation’s cosmological hyperparameters, such as
the stellar mass - halo mass relation, using all avail-
able halo data?

• How long does such an inference take?

A brief introduction to the halo model, the effects
of strong and weak gravitational lensing, representing
galaxy ellipticities, and cosmological correlation func-
tions is discussed in Section 2. The implementation of
the Pangloss framework to make LOS lensing predic-
tions in the Millennium Simulation is described in Section
3, and the results of the framework on 1440 galaxies on a
field size of 144 arcmin2, along with a comparison of the
predicted lensed ellipticities to ray-traced ellipticities, is
given in Section 4. Section 5 explores the feasibility of
using the presented Pangloss framework to make pa-
rameter inferences using all available halo data either by
likelihood estimation or approximate Bayesian computa-
tion. Section 6 discusses limitations of the used frame-
work as well as potential physical and computational im-
provements that can be made for upcoming work before
concluding remarks in Section 7.

2 COSMOLOGICAL BACKGROUND

Before describing the developed model for LOS dark
matter mass map reconstructions from weak lensing mea-
surements, I briefly review a few topics in astronomy and
cosmology that are relevant for this thesis such as the
dark matter halo model, gravitational lensing, and cor-
relation functions.

FIG. 1: A visualization of the large-scale dark matter
distribution in the Millennium Simulation. The largest
bright spots correspond to superclusters of galaxies
which are connected by thread-like structures of matter
called filaments. Taken from [20].

2.1 Dark Matter Halos

Cosmological simulations like the Millennium Simula-
tion demonstrate that the underlying matter distribution
of our universe is likely breathtakingly complex; rather
than a largely disordered collection of galaxies and in-
terstellar gas, matter appears to condense into clusters
and superclusters of galaxies threaded together by large
filaments pocketed with under-dense regions called voids,
as shown in Figure 1 [20]. While the exact relation be-
tween the distribution of galaxies and dark matter is not
known, simulations predict that early galaxies formed in
the large gravitational potentials of over-dense regions of
dark matter [9]. This suggests that, while we cannot map
dark matter directly, galaxies should trace out at least
some of the underlying dark matter structures [15]. A
comparison of the predicted galaxy and dark matter dis-
tribution from a small region of the simulation is shown
in Figure 2.

The simplest way to model the relationship between
galaxies and dark matter is by enveloping each galaxy in
a spherically symmetric dark matter ‘halo’ of a certain
mass Mh. These halos extend far beyond the edge of the
visible galaxy that they enclose, with the Milky Way’s
own halo estimated to have a radius of between 300,000
and 400,000 light-years [21]. While the density profile of
the halos may be complex, numerous simulations have
shown that it can be well approximated locally by the
Navarro-Frenk-White (NFW) profile which has the form

ρNFW (r) =
ρ0

r
Rs

(
1 + r

Rs

)2 (1)

where the constant ρ0 and the scale radius Rs are pa-
rameters that vary from halo to halo [11]. However, the
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(a) Galaxy distribution. (b) Halo distribution.

FIG. 2: A comparison of the galaxy and dark matter distribution for a single cluster in the Millennium Simulation.
Galaxies tend to be located in the centers of clumps of dark matter called ‘halos’, which suggests that galaxies at
least partially trace out the underlying dark matter distribution. Taken from [20].

NFW profile is not entirely physical as the total mass
diverges as the density is integrated out to an infinite
radius. Instead, this work uses a truncated NFW profile
called the Baltz-Marshall-Oguri (BMO) profile given by

ρBMO(r) = ρNFW ·
(

r2
t

r2 + r2
t

)2

(2)

where rt is the truncation radius as it has been shown to
be a better fit to simulated data [12].

2.2 Filaments, Voids, and the Smooth Compo-
nent Correction

The halo model only accounts for dark matter struc-
tures associated with galaxies. However, this neglects
other mass structures such as the filaments and voids
that can be seen in Figure 1. Modeling these features
accurately would be difficult; we could try, for example,
to model filaments by attaching cylinders of dark matter
between massive clusters of galaxies. While an intrigu-
ing idea, rigorously testing for the appropriate filament
density distributions, selection criteria, and frequency to
statistically match simulations could constitute its own
thesis.

Instead, as the mean mass density of large enough
(∼100 Mpc) regions should approximate the mean mass
density of the universe, we can make a ‘first-order’ ap-
proximation by assuming that all additional mass (or
absence of mass) is contained in a uniform ‘smooth-
component’ density that ensures the total mass density
of any sufficiently large region equals the mean density
of the universe at that redshift. This assumption can be

expressed as

ρmatter(z) = ρhalos(z) + ρsmooth(z) (3)

where z is the redshift and ρmatter(z), ρhalos(z), and
ρsmooth(z) are the mean matter densities of the uni-
verse, halos, and smooth-component correction respec-
tively. For simplicity, we rename theses quantities ρm(z),
ρh(z), and ρs(z) so that Equation (3) now reads as

ρm(z) = ρh(z) + ρs(z). (4)

To solve for the desired smooth-component correction,
we first need to calculate ρm(z) and ρh(z) and then sub-
tract:

ρs(z) = ρm(z)− ρh(z). (5)

Note that, unlike the halo density, each smooth-
component mass sheet at a given z can have positive or
negative mass density as the halos at that redshift could
happen to be in a local overdensity or underdensity.

2.2.1 Calculating ρm(z):

Using the fluid equation and equation of state [22],
we can show that the energy density of non-relativistic
matter εm(z) evolves as

εm(z) =
εm,0
a(z)3

= εm,0(1 + z)3, (6)

where a(z) = (1+z)−1 is the cosmic scale factor (a(0) = 1
by convention) and a subscript of 0 means the value at
the present time, or equivalently a redshift of 0. This
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is physically intuitive as the (mostly constant) mass is
being diluted by an expanding volume. As the mass is
non-relativistic, its energy density can be approximated
by

εm(z) ≈ ρm(z)c2

and thus

ρm(z) ≈ ρm,0(1 + z)3. (7)

The current matter density ρm,0 is usually reported in
literature in terms of the present matter density param-
eter Ωm,0 defined as

Ωm,0 =
ρm,0
ρc,0

=
8πG

3H2
0

ρm,0, (8)

where ρc,0 =
3H2

0

8πG is the present critical density. Solving
for ρm,0 gives

ρm,0 =
3H2

0

8πG
Ωm,0

and so we may write the non-relativistic mass density of
the universe as a function of redshift as

ρm(z) ≈
(

3H2
0

8πG
Ωm,0

)
(1 + z)3. (9)

Calculating ρh(z):

The halo mass density ρh(z) at a given redshift is sim-
ply the sum of the individual halo masses Mh,i over a
physical volume dVp. However, we want a proper volume
element that is expressed in terms of the solid angle dΩ
and the redshift dz. To do this, we can start with the
standard spherical volume element dV = r2drdΩ. How-
ever, one must be careful to (1) use proper distances, (2)
account for the possibility of a curved universe, and (3)
use the correct distance measure for r (in this case, the
angular diameter distance). From this we that the proper
volume element must have the form of

dVp = dA(z)2drpdΩ (10)

where dA(z) is the angular diameter distance and the
subscript p denotes proper distance. When the angular
diameter distance dA(z) is multiplied by an angle (i.e.
dA(z)dθ and dA(z)dφ), it gives an approximation of the
proper distance between two objects at the same red-
shift. dA(z) can be expressed in terms of the transverse
comoving distance dM (z),

dA(z) = a(z)dM (z) =
dM (z)

1 + z
(11)

which is the comoving analog of dA(z). The transverse
comoving distance depends on the assumed cosmology of

the universe and takes the form of

dM (z) =


dH/
√

Ωk sinh
[√

ΩkdC(z)/dH
]

: Ωk > 0
dC(z) : Ωk = 0

dH/
√
|Ωk| sin

[√
|Ωk|dC(z)/dH

]
: Ωk < 0

(12)
where dH = c/H0 is the Hubble distance, Ωk is the cur-
vature parameter (Ωk = 0 for a flat universe), and dC(z)
is the LOS comoving distance given by

dC(z) = dH

∫ z

0

dz′

E(z′)
(13)

where E(z) is the dimensionless Hubble parameter

E(z) =
√

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ. (14)

Substituting Equation (11) into (10) leads to

dVp = da(z)2drpdΩ

=
dm(z)2

(1 + z)2
drpdΩ (15)

and so all that remains is to express drp in terms of dz.
As the proper distance between two objects rp(z) is

related to the comoving distance dC(z) by

rp(z) = a(z)dC(z) =
dH

1 + z

∫ z

0

dz′

E(z′)
, (16)

it follows that that an infinitesimal proper displacement
drp is given by

drp =
dH

E(z)(1 + z)
dz. (17)

Combining this result with Equation (15) leads to the
desired proper volume element

dVp =
dHdM (z)2

E(z)(1 + z)3
dzdΩ. (18)

The proper volume is found by integrating the above
volume element over the solid angle dΩ and the desired
dz range, so the halo density ρh(z) is then given by

ρh(z) =

∑
iMh,i

V (z)

=
∑
i

Mh,i ·
(
dH

∫
dM (z′)2

E(z′)(1 + z′)3
dz′dΩ

)−1

(19)

and the smooth-component correction is simply the dif-
ference between Equations (9) and (19).
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(a) An image of the luminous red galaxy LRG 3-757
along with a strongly lensed background galaxy,
called the ‘Cosmic Horseshoe’ [23].

(b) The shape of a galaxy image for various
ellipticity components ε1 and ε2 on the x and
y-axes respectively. Taken from [24].

FIG. 3

2.3 Gravitational Lensing

While dark matter does not absorb or emit light, it
does interact with light indirectly through gravitational
lensing. The presence of matter curves spacetime locally
which causes light to follow curved paths called geodesics.
The deviation in path is usually negligible, but can be
significant in regions containing clusters of galaxies and
their massive dark matter halos. By observing how the
magnitudes and shapes of distant galaxies are distorted
when traveling through regions of matter, we can infer
the masses of the dark matter halos and reconstruct the
hidden dark matter mass distribution.

A full mathematical treatment of the gravitational
lensing of galaxies due to the gravitational fields of mas-
sive objects requires general relativity (see [22] for de-
tails). However, the important results can be summa-
rized as follows: Foreground mass distorts the image of
a background galaxy in two distinct ways; the image is
magnified and sheared tangentially about the foreground
mass making it more elliptical. The magnification of the
image is determined by the convergence κ defined as

κ(~θ) =

∑
(~r, zl)∑

cr(zl, zs)
(20)

where
∑

(~r, zl) is the projected surface mass density of
the lensing mass and

∑
cr(zl, zs) is the critical surface

density for a given source redshift zs and lens redshift zl
[24]. The shearing of the source is most often described
by the complex shear γ defined to be

γ = γ1 + iγ2 = |γ| e2iϕ (21)

where |γ| is the magnitude of the shear and ϕ is the
orientation of the shear. While the intrinsic ellipticities
of source galaxies are randomly oriented near the fore-
ground mass before lensing, they will be systematically
more aligned with the shear field after lensing.

The quantity usually of interest in lensing calculations
is the reduced shear, defined as

g =
γ

1− κ
. (22)

Then using the thin lens approximation for the lensing
of a background source of intrinsic ellipticity εi by fore-
ground mass at a point with reduced shear g, the lensed
ellipticity ε is given by

ε =


εi + g

1 + g∗εi
: |g| ≤ 1

1 + gε∗i
ε∗ + g∗

: |g| > 1

(23)

where an asterisk denotes the complex conjugate [24].
The behavior of the distortion relies strongly on the mag-
nitude of g; the effect is called strong lensing if |g| ' 1
and weak lensing if |g| � 1. The effects of strong lens-
ing can be quite dramatic, distorting sources into large
arcs, multiple images, or even an Einstein ring as shown
in Figure 3a.

While strong lenses are rare as the alignment of the
source and foreground mass must be nearly perfect, all
sources are weakly lensed when traveling through fore-
ground halos. The effect is small, usually an ellipticity
distortion of only a few percent, but can be detected lo-
cally by averaging the ellipticities of all sources in a small
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region. As the orientations of the sources should be ran-
dom, it would be expected that

〈ε〉 = 0.

However, as sources in the same small region are sheared
in (approximately) the same way, this implies that

〈ε〉 ≈ g. (24)

Finally, as in the weak lensing regime κ� 1 and |γ| � 1,
it follows that

γ ≈ g ≈ 〈ε〉 (25)

which provides a method of detecting the shear observa-
tionally.

The analytical form of the convergence and shear con-
tribution from a BMO-profile halo is quite messy, but
is derived and explained in detail in [12]. Calculating
the lensing contribution of the smooth-component cor-
rection is much simpler; the projected surface mass den-
sity at at given redshift is found by integrating ρs(z)
over a sufficiently small dz interval, and then the mass
sheet’s convergence is found using Equation (20). There
is no shear contribution as a uniform sheet of mass causes
only magnification due to the mass sheet degeneracy [25].
However, Equation (23) shows that the lensed ellipticities
depend on the reduced shear, which does depend on the
additional convergence terms resulting from the smooth-
component correction.

2.4 Galaxies as Ellipses

To calculate the lensed ellipticities in the previous sec-
tion, galaxies must first be translated from pixel inten-
sities into elliptical representations of the galaxies. This
is not always possible as galaxies are diverse in type and
shape and not all are well approximated by ellipses. How-
ever for this thesis, all galaxy ellipticities are simulated
so this issue is avoided. For a more thorough analysis of
measuring image ellipticities, see [24].

Consider a galaxy image that can be well approximated
as an ellipse at an angle φ above an arbitrary reference
line. The galaxy’s complex ellipticity is defined to be

ε = ε1 + iε2 = |ε| e2iφ (26)

where the magnitude of the galaxy’s ellipticity |ε| is de-
fined as

|ε| = 1− r
1 + r

(27)

and r ≤ 1 is the ratio of the semi-minor and semi-major
axes of the ellipse. This compact notation combines the
eccentricity and orientation of the ellipse into a single
object. A plot from [24] showing the shape of elliptical
galaxies for various values of ε1 and ε2 is shown in Figure
3b.

There are many complications to using this scheme in
practice, most notably the multiplicative bias resulting
from the smearing of galaxy images by the observational
point spread function (PSF) [26]. While the effects of a
PSF can be complex, in general it causes galaxy images
to appear less elliptical than they truly are. To account
for this in generated galaxy images, a multiplicative bias
parameter M is often used to lessen the intrinsic elliptic-
ity using

εobs = M · εint (28)

where εint is the generated intrinsic ellipticity of the im-
age and εobs is the ellipticity that would be recorded by
a detector.

2.5 Correlation Functions

If all galaxies were spherical then the measurement of
their ellipticities would give an exact description of the
lensing done by foreground mass structures. Unfortu-
nately, the intrinsic ellipticities of background galaxies
contribute significant noise as we do not know how any
individual galaxy ellipticity has been altered by weak
lensing. However as two sources lensed by the same fore-
ground mass will have their ellipticities distorted in a sim-
ilar way, their lensed ellipticities should be correlated re-
gardless of intrinsic orientation. The average correlation
of a sufficient number of galaxy pairs should overcome
the noise and lead to a detectable signal. Importantly,
this implies that the correlation of galaxy ellipticities is
a probe of the underlying dark matter mass distribution
[6].

The mathematical tool that measures the average cor-
relation as a function of separation distance between two
galaxies is called the ellipticity-ellipticity (ε-ε) correla-
tion function. A quick overview of this function is given
below, but readers that are unfamiliar with correlation
functions in the context of cosmology or want a visual
aid should see Appendix 9.1.

Given two galaxies with ellipticities εi and εj whose
orientation is offset by polar angle α, the tangential and
cross-component components of the ellipticities, εt and
ε× respectively, for each are defined as

εkt = −Re
(
εke
−2iα

)
, (29)

εk× = − Im
(
εke
−2iα

)
. (30)

Instead of using the autocorrelation and cross-correlation
of these quantities, it turns out to be more convenient to
define the combinations

ξ±(∆θ) =
〈
εit(

~θ) εjt(
~θ + ~∆θ)

〉
±
〈
εi×(~θ) εj×(~θ + ~∆θ)

〉
, (31)

ξ×( ~∆θ) =
〈
εit(

~θ) εj×(~θ + ~∆θ)
〉

(32)
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where ~θ is the position vector of the first galaxy and ∆~θ is
the angular separation vector between the pair of galax-
ies [24]. Gravitational lensing shears ellipticities tangen-
tially, so ξ×(∆θ) should vanish with enough galaxies and
therefore is a useful estimate of the bias. The amplitude
of ξ− is significantly lower than ξ+ as it depends on the
initial orientation of both ellipticities and not just their
offset, which leaves ξ+(∆θ) as the desired probe of lens-
ing mass. As galaxies will only be lensed by the same
foreground mass at relatively small separation distances,
the ε-ε correlation function decreases sharply as the sep-
aration increases.

A similar statistical measure often used in weak lens-
ing measurements is the galaxy-mass correlation function
which, in this setting, measures the cross-correlation of
galaxy ellipticities and halo locations. Simply put, the
function measures the correlation of lensed ellipticities
around foreground halos as a function of separation dis-
tance and only has one component relevant for this work
(see [27] for details).

3 PANGLOSS: LINE OF SIGHT MASS RE-
CONSTRUCTIONS

To infer foreground dark matter mass structures us-
ing weak gravitational lensing, first a model of the re-
lationship between foreground galaxies and dark matter
must be established and robustly tested to see if, statisti-
cally, it makes the same lensing predictions of background
sources as the true underlying dark matter structure. To
do this, I built upon the publicly available Pangloss1

framework used by Collett et al. in [17] to reconstruct all
the mass along the lines of sight of generated background
galaxies in the Millennium Simulation using a halo model
with smooth-component correction. The lensing contri-
bution of each halo is calculated, and the total lensing of
the background galaxy is the sum of each halo contribu-
tion. The implementation of this process is detailed in
the following sections.

3.1 Model Assumptions

While Pangloss may be used more generally, the
present analysis makes some additional strong assump-
tions to simplify the problem for a first attempt at mak-
ing weak lensing predictions:

1. The dark matter mass distribution can be approx-
imated by spherically symmetric BMO halo pro-
files attached to each galaxy, along with a smooth-
component correction.

1 https://github.com/drphilmarshall/Pangloss

2. The stellar mass of the foreground galaxy is negli-
gible for lensing calculations.

3. The mass of the dark matter halo of each fore-
ground galaxy is known.

4. A spectroscopic redshift of each foreground galaxy
is known.

Testing the first assumption is the main goal of this
thesis. The second assumption is reasonable as it is es-
timated that dark matter halos are on average one to
two orders of magnitude more massive than their host
galaxies [14]. Clearly the third assumption will never be
true for any observational data. However, this allows for
a best-case estimate of how well the Pangloss frame-
work could predict weak lensing effects given all possible
information. This assumption can be relaxed by sam-
pling a dark matter halo mass from an assumed stellar
mass - halo mass relation. The fourth assumption is also
unrealistic as most galaxies in sky surveys only have a
less-reliable photometric redshift due to time constraints,
but this again allows for a best-case estimate. This as-
sumption could be relaxed by instead using photometric
redshifts, adding random noise, and repeating the up-
coming analysis on many realizations of the photometric
redshifts.

3.2 The Millennium Simulation

Pangloss cannot be used to make dark matter mass
maps using existing galaxy catalogs until it is tested on
a simulated universe with known dark matter structure
to determine how accurately and precisely it predicts
the lensing of background sources. For this purpose,
Pangloss was tested on galaxy catalogs from the Mil-
lennium Simulation, an N-body simulation consisting of
over 10 billion dark matter ‘particles’ each representing
a billion solar masses and populated with about 20 mil-
lion galaxies [29]. The simulation contains baryonic and
dark matter structure believed to be similar to our own
universe, and uses cosmological parameters from WMAP
1st-year data analysis which assumed a matter density of
Ωm = 0.25, a dark energy density of ΩΛ = 0.75, and a
Hubble constant of H0 = 73 km s−1 Mpc−1 [30]. From
the work of Hilbert et al. in [19], high resolution maps of
the ray-traced shear and convergence of galaxy sources
at z = 1.3857 are publicly available. From these maps,
an estimate of the ‘true’ lensing of background galaxy el-
lipticities when traveling through the foreground mass of
the Millennium Simulation can be calculated using Equa-
tion (23).

3.3 Generating Background Galaxies

With the (0,0,0,0) catalog of Millennium Simulation
foreground galaxies chosen, a set of 1440 background
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FIG. 4: A cartoon model of how the Pangloss framework uses a dark matter halo model to reconstruct the
foreground mass along the LOS of a background source galaxy. A ‘lightcone’ centered at a background source is
constructed with radius RL and populated with all foreground galaxies contained in this volume. Each foreground
object has an attached dark matter halo and physical distance to the LOS (dashed line). The shear and convergence
along the LOS contributed by each halo is calculated using [28], and the predicted ellipticity is determined using the
sum of these contributions and Equation (23).

galaxies over a field of 144 arcmin2 was generated, with
density 10 galaxies per arcmin2. The intrinsic orientation
of each galaxy was sampled from a uniform distribution
as, without lensing, there should be no preferred orien-
tation due to the assumption of an isotropic universe.
The magnitude of the galaxy ellipticities was sampled
from a normal distribution with a standard deviation of
0.2, but any ellipticities with magnitude greater than one
were re-sampled. Random ellipticity noise was sampled
from a normal distribution with a standard deviation of
0.1 and added to the intrinsic ellipticities. Finally, each
ellipticity was multiplied by M = 0.9 to account for a
multiplicative bias of 10%.

3.4 Creating Lightcones

While ideally all foreground mass in a field would be
considered when predicting the weak lensing of a back-
ground galaxy, it is computationally prohibitive to do so.
Instead, all foreground halos contained within a ‘light-
cone’ centered along the LOS to the source and extend-
ing out to a chosen lightcone radius RL were considered
when calculating the lensing contributions for the back-
ground source. A cartoon model of this process is shown
in Figure 4. Unless otherwise specified, experiments in
this paper used a radius of 6 arcminutes and halo trun-
cation scale of five times the virial radius.

To calculate the convergence and shear contribution
of each halo, the physical distance from the halo to the
LOS was needed. To increase the speed of distance calcu-

lations, the foreground halo redshifts were first binned to
a grid of 100 equally-sized redshift bins ∆z = 0.013857
from z = 0 to the sourced redshift of z = 1.3857, and
then converted to physical distances using the cosmology
defined by the Millennium Simulation.

3.5 Assigning Relevance to Halos

Not all foreground halos are equally relevant to the
lensing calculation. To add a significant contribution to
the combined shear and convergence, a halo must be mas-
sive, close to the LOS, or preferably both. McCully et
al. in [18] derived that the correct metric for determin-
ing the relevance of a given foreground halo to the overall
lensing calculation is given by

Rel(Mh, R) ∝ Mh

R3
(33)

where Mh is the halo mass and R is the distance from
the halo to the LOS. Numerical values are assigned by
comparing a halo’s individual Mh and R to a threshold
MT and RT :

Rel(Mh, R) =
(Mh/MT )

(R/RT )3
. (34)

In this work, the threshold values used are
MT = 1012M� and RT = 10 kpc. The relevance distri-
bution for one background catalog realization of 1440
sources with 4836± 104 foreground halos per lightcone
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FIG. 5: The mean number of relevant halos in a single
realization of 1440 source galaxies, each with 4836± 104
halos per lightcone, determined by Equation (34) with a
threshold mass and distance of MT = 1012M� and
RT = 10 kpc respectively. The error bars correspond to
the standard deviation of relevant halos across all
lightcones. As expected, most halos are either too far
away from the LOS or not massive enough to make a
significant contribution, or both. The number of halos
falls logarithmically with the relevance limit and reaches
a mean of one halo at a relevance of 10−2M�/Mpc3.

with radii of 6 arcminutes is shown in Figure 5. As ex-
pected, there are very few massive halos along the LOS
and therefore only a small percentage of foreground halos
should have a high relative contribution to the predicted
lensing quantities. This encouraged the intended analy-
sis to be done on lightcones with all halos and those with
only a small subset of the most relevant halos to com-
pare the results and see if the computational time saved
by using only the most relevant halos was worth the loss
in prediction accuracy.

3.6 Calculating the Smooth-Component Correc-
tion

As discussed in Section 2.2, the halo model does not
account for additional mass structures such as filaments.
To apply the smooth-component correction to Pangloss,
the mean mass density ρ(z) and halo density ρh(z) had to
be calculated at each of the 100 redshift bins. For ρh(z),
this was done by summing all halo masses Mh,i in a given
redshift bin and integrating Equation (18) from z −∆z/2

FIG. 6: A diagram of the smooth-component correction
implementation in Pangloss. The halo density at each
redshift slice z was calculated by summing the masses
of all foreground halos within ∆z and dividing by the
proper volume of the cone slice using Equation (18) and
solid angle dΩ.

to z + ∆z/2, except for the boundary bins, and multiply-
ing by the solid angle of a cone Ω = 2π(1− cosRL). Once
ρh(z) had been calculated for each redshift slice, the pro-
jected surface mass density was found by integrating over
the redshift interval,∑

(z) =

∫ z+ ∆z
2

z−∆z
2

ρs(z) dz

=

∫ z+ ∆z
2

z−∆z
2

ρ(z)− ρh(z) dz, (35)

and the convergence contribution of the mass sheet
was calculated using Equation (20) with zl = z and
zs = 1.3857. The corrected total convergence for a given
background source is simply the sum of the halo contribu-
tions and the smooth-component contributions. There is
no additional shear produced by a uniform sheet of mass
[25], but the corrected reduced shear is now calculated
using the corrected total κ in Equation (22). A diagram
of this process is shown in Figure 6.

The volume and projected surface mass densities of
each redshift slice for the same source realization as Fig-
ure 5 are shown in Figures 7a and 7b respectively. In
each plot, the halo density at each redshift slice is plot-
ted in green, the smooth-component density in blue, and
universe mean density in black, as well as a histogram of
the galaxies per bin in the background. In most redshift
bins, the halo density is one to two orders of magnitude
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lower than than the universe mean density leading to
a smooth-component density very close to that of the
mean density. However, all mass densities are far below
the critical density, plotted in red, and so well within
the weak-lensing regime. The convergence distribution
of each halo and the 100 smooth-components is plotted
in Figure 8.

3.7 Line of Sight Lensing Predictions

Using the halo mass and physical separation distance
to the LOS, the shear and convergence contribution of
a single foreground halo with BMO profile is calculated
using methods described in Section 2.3 (see [12] and [28]
for more details). The total convergence and shear along
the LOS of the lightcone is simply the sum of the conver-
gence and shear contributions of each halo contained in
the lightcone, as well as the additional convergence terms
from the smooth-component correction. The Pangloss
predicted lensed source ellipticity is then calculated using
Equation (23).

4 CHECKING THE PANGLOSS MODEL

Using the methodology presented in Section 3, 1440
background galaxies in a 144 arcmin2 subset of the
(0,0,0,0) Millennium Simulation foreground catalog were
generated and lensed by both the ray-traced shear and
convergence maps as well as the Pangloss framework.
With a lightcone radius of 6 arcminutes, the lightcones
contained an average of 4836± 104 foreground halos.
Both sets of lensed ellipticities were characterized with
correlation functions, as well as the intrinsic ellipticities
of the sources before lensing.

Figure 9 displays different views an example lightcone
where the foreground halos are plotted as circles whose
size are proportional to their galaxy brightness (top left),
angular size (top center), Pangloss predicted conver-
gence contributions (top right), and halo mass (bottom).
Comparing the center and top right figures demonstrates
the importance of proximity to the LOS for significant
κ contributions. Figure 10a shows a foreground cluster
in a 1.44 arcmin2 section of the Millennium Simulation
along with the ray-traced convergence (plotted in inverse
grayscale) and shear maps (plotted as red shear sticks)
from [19]. Figure 10b displays the generated background
ellipticities in blue, the ‘true’ lensed ellipticities in green,
and the halo model lensed ellipticities in purple. While
there is a visible difference between the lensed elliptici-
ties, both align tangentially around the foreground mass
as expected.

Instead of comparing the ray-traced and Pangloss pre-
dicted ellipticities for individual galaxies, the lensing is
characterized globally with correlation functions. As de-
scribed in section 2.5, the ε-ε correlation function mea-
sures how correlated the ellipticities of pairs of galax-

ies are as a function of separation distance, while the
galaxy-mass correlation function measures the correla-
tion of lensed ellipticities around foreground halos as a
function of separation distance. Both correlation func-
tions are used in this work to estimate how well the
Pangloss framework models weak lensing by dark matter
structures and are computed using the publicly available
TreeCorr module written by Mike Jarvis2. Note that
the ε-ε correlation function definition used in TreeCorr
is slightly different than that used in most of the litera-
ture; for a derivation of the connection between Jarvis’s
definition [31] and the more common Schneider definition
[24], see Appendix 9.2.

4.1 Ellipticity-Ellipticity Correlation Function

The first test of the halo model was with the ε-ε cor-
relation function with a lightcone radius of 6 arcminutes
and all 4836 ± 104 halos per lightcone which is given in
Figure 11a. The statistic measured the average correla-
tion between pairs of ellipticities at separation distances
between 0.1 and 2 arcminutes. The cross-component of
the correlation function ξ× shows no significant devia-
tion from zero as expected, as gravitational lensing only
shears galaxies tangentially. For the ξ+ component, the
ray-traced (plotted in green) and halo model (plotted in
purple) are in relative agreement from separation scales
of 0.1 to 0.2 arcminutes, but there is a systematic un-
derprediction of correlation by the halo model on scales
larger than 0.2 arcminutes by an average 31% error. This
result is consistent with Pace et al. in [32] which found
that a purely halo model underpredicted the lensing cor-
relation on average by 40%. This may be indicative that
not enough halo mass is being used in the lensing predic-
tion, the halo model does not adequately address large-
scale mass structures, or that there is significant dark
matter mass not correlated with galaxies. These issues
are discussed further in Section 6.1.

Using the same catalog of background sources, this
statistic was recalculated for the halo model using various
lightcone radii ranging from RL = 1 to RL = 8 arcmin-
utes. The result is shown in Figure 11b, where the se-
ries of model predicted correlation functions is compared
to the ray-traced correlation function. As RL increases,
the mean number of foreground galaxies contained in
each lightcone grows quadratically from 134± 17 galax-
ies when RL = 1 arcminute to 8570± 87 galaxies when
RL = 8 arcminutes. Increasing the number of foreground
objects, and thus increasing the mass and structure con-
sidered for shear and convergence predictions, system-
atically increased the predicted correlation on all scales.
This result encourages the use of lightcones with radii of
at least 8 arcminutes, and further emphasizes the need

2 https://github.com/rmjarvis/TreeCorr
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(a) Smooth-component volume densities. (b) Smooth-component projected surface densities.

FIG. 7: The surface and volume densities for each of the 100 smooth-component correction and halo densities in a
lightcone with radius RL = 6 arcminutes. The green line is the halo density of each slice and the blue line is the
calculated smooth-component density such that the two densities sum to the universe mean density plotted in black.
The number of halos in each redshift bin is plotted as a histogram in the background. The red line in plot (b) is the
critical surface density.

FIG. 8: The convergence distribution of the 4836
individual halos, plotted in green, and the 100
smooth-component slices, plotted in blue, contained in
the same lightcone as Figure 7. The mass sheets have a
higher convergence contribution than all but the most
relevant halos in the lightcone. The curve of smooth
component κ’s indicates how foreground mass at the
center of the light’s path has the highest lensing
efficiency.

for computational efficiency to allow the timely use of
large lightcones.

4.2 Galaxy-Mass Correlation Function

The catalog of lensed ellipticities was also analyzed us-
ing the galaxy-mass correlation function with separation
distances from 0.1 to 2 arcminutes using the same light-
cones and halo number. The result is shown in Figure
12a. The lensed ellipticities from the ray-tracing and halo
model both show positive correlation on all calculated
scales and largely agree on scales larger than 0.3 arcmin-
utes except for a slight overprediction by the halo model
near 0.45 arcminutes. However, a new feature is the large
overprediction of correlation on separation scales smaller
than 0.2 arcminutes. This is likely because background
sources this close to massive foreground halos are often
in the strong lensing regime which is not currently ac-
counted for by the Pangloss framework.

The galaxy-mass correlation function was similarly re-
calculated at increasing lightcone radii from R = 1 to
R = 8 arcminutes with the result in Figure 12b. As
with the ε-ε correlation, structure larger than ∼1 ar-
cminute is captured much better by increasingly large
lightcone radii as expected. However, there is little to
no improvement of the galaxy-mass correlation on scales
smaller than 0.3 arcminutes which further points to the
need to model strong lensing.
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FIG. 9: Four different views of a lightcone with radius RL = 6 arcminutes centered on the LOS of a particular
background source containing 4829 halos. The top left figure plots the positions of the halos with the size
proportional to their galaxy brightness in the i-band, the center figure plots the angular size of foreground halos
with red and blue regions representing the NFW scale radius and virial radius of each halo respectively, the top
right figure plots the κ contributions of each halo, and the bottom plots the positions of each halo along the redshift
axis with size proportional to κ contribution.

4.3 Correlation Fraction of Relevant Halos

Of intrinsic interest is the relative number of relevant
halos needed in each lightcone to accurately predict the
halo correlation functions in Figures 11a and 12a, as a
low percentage would allow much faster lensing predic-
tions. Figures 13a and 13b display an example ε-ε and
galaxy-mass correlation function comparison of the halo
model using all halos (plotted in purple) and using only
halos above the relevance limit of 10−5M�/Mpc3 (plot-
ted in blue) with RL = 6 arcminutes, as well as the
percent error of each predicted value between the two
implementations. This relevance limit corresponded to
66±10 relevant halos per lightcone and resulted in a nor-
malized root-mean-square error (NRMSE) of 0.164 and
0.082 for the two statistics. Figure 14 plots the ε-ε and
galaxy-mass correlation function NRMSE as a function
of relevance limits and mean relevant halos, still using
a lightcone radius of 6 arcminutes. These results sug-
gest that either correlation function prediction can be
approximated on average with an NRMSE below 10%
using around the 70 most relevant halos, or an NRMSE
of below 5% using around the 300 most relevant halos.
Calibration curves such as this can allow the best-case
correlation function to be predicted within a desired ac-
curacy at only a fraction of the full lensing calculation

which will be especially helpful in future analyses with
much larger fields of view.

4.4 Convergence Mass Maps

While correlation functions can describe how well the
lensing predictions are being made globally, it is still in-
structive to analyze the difference between the ray-traced
and halo model projected mass maps. This was done
by selecting a region of foreground mass, calculating the
ray-traced and Pangloss-predicted convergence of a uni-
form grid of background sources in the field, and binning
the convergence maps to a desired resolution. Conver-
gence is proportional to projected surface mass density,
so comparing the two convergence maps is equivalent to
comparing their respective projected mass distributions.

The result of a particular 9 arcmin2 field is shown in
Figure 15, where the ray-traced convergence is shown
on the left, the halo model convergence is in the center,
and the ray-traced convergence subtracted from the halo
model convergence is shown on the right. While partic-
ular foreground objects are almost always predicted, the
currently implemented halo model over-predicts the con-
vergence throughout most of the field; the halo model
does not appear to accurately account for the voids be-
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(a) The ray-traced convergence and shear in a 1.44
arcmin2 field of the Millennium Simulation, as
calculated from [19]. The convergence, plotted in inverse
grayscale, is proportional to the projected mass density
and represents foreground mass. The shear field is
plotted as sparsely-sampled red sticks that have size
proportional to their magnitude. A few of the generated
background sources are plotted as blue ellipticity sticks
with length proportional to their eccentricities.

(b) The same 1.44 arcmin2 field as 10a, but now with
the ‘true’ lensed ellipticities in green, the halo model
predicted lensed ellipticities in purple, and a few of the
most massive foreground halos plotted as orange circles.
Lensed ellipticity predictions tend to be more accurate
further from the lensing mass, with significant
differences near the centers of massive objects. All are
sheared tangentially around the massive structures as
expected.

FIG. 10

tween foreground masses and over-predicts the mass of
most foreground objects. This could be a result of in-
correct halo profiles, a too-simplistic implementation of
the smooth-component correction, missing features in the
halo model, a significant amount of dark matter mass not
being correlated with galaxies, or some combination of all
four possibilities.

4.5 Computational Performance

A secondary goal of this research was to investigate
how quickly the shear and convergence prediction for
a single background source could be made. The mean
CPU time required for the lensing prediction of a single
lightcone with radius RL = 6 arcminutes using all halos
was 140± 20 ms for the first run. However, many small
improvements to the coding infrastructure of Pangloss
were made to speed up the prediction. The mean CPU
time for a single lightcone lensing prediction for 6 sepa-
rate runs after various (and cumulative) changes is plot-
ted in Figure 16, with a final run time of 57± 8 ms. Run
1 corresponds to the original Pangloss framework code,
run 2 wrote only the needed quantities for this analysis

to the catalog Astropy3 tables, run 3 changed the red-
shift grid binning to be done once for all halos in the
drilling rather than for every individual halo in lensing,
run 4 optimized various lensing calculations with matri-
ces whenever possible, run 5 replaced the computation-
ally expensive lensing calculation functions with a lookup
table, and run 6 used only the 65± 9 most relevant halos
from a relevance limit of 10−5M�/Mpc3. Cumulatively,
these changes accounted for a 59% decrease in mean CPU
time per lightcone and halved the initial variation. While
significant progress has been made, the code needs to be
further optimized to allow lensing predictions of fields of
many square degrees to be done in a few seconds. Section
6.3 discusses the details of future computational scale-up
plans.

Figure 17 displays how the mean CPU runtime per
lightcone scales as a function of lightcone radius RL with
all halos (left) and relevance limit at a constant radius
of RL = 4 and RL = 8 arcminutes (right). Unsurpris-
ingly, the runtime depends strongly on the number of
galaxies per lightcone. Both figures show that the lens-
ing calculation requires an overhead of about 55± 10 ms,
but then the calculation speed depends quadratically on

3 http://www.astropy.org/



14

(a) The ε-ε correlation function for 1440 sources at
separation distances from 0.1 to 2 arcminutes using
lightcones with radii of RL = 6 arcminutes, where green is
the ‘true’ ray-traced correlation and purple is the halo
model predicted correlation. While the cross-component
ξ×(∆θ) for both is consistent with zero across all scales as
expected, the halo model systematically underpredicts the
correlation on scales larger than 0.2 arcminutes.

(b) The ε-ε correlation functions of 1440 sources for a series
of halo model frameworks with increasing lightcone radii
from RL = 1 to RL = 8 arcminutes, all plotted in purple
with various line styles. These are compared to the same
ray-traced correlation from Figure 11a. The predicted
correlation seems to converge to the ray-traced value with
larger RL as more halo contributions are accounted for.

FIG. 11

(a) The galaxy-mass correlation function of 1440 sources at
separation distances from 0.1 to 2 arcminutes and a
lightcone radius of RL = 6 arcminutes. The halo model
predicts the statistic well on scales above 0.3 arcminutes,
but systematically overpredicts correlation on scales below
0.2 arcminutes. This is likely due to strong lensing effects
which are not currently accounted for in Pangloss.

(b) The galaxy-mass correlation functions of 1440 sources
for a series of halo model frameworks with increasing
lightcone radii from RL = 1 to RL = 8 arcminutes, all
plotted in purple with various line styles. These are
compared to the same ray-traced correlation from Figure
12a. The predicted correlation seems to converge to the
ray-traced value with larger RL as more halo contributions
are accounted for.

FIG. 12
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(a) ε-ε correlation function comparison.

(b) Galaxy-mass correlation function comparison.

FIG. 13: Comparing the two correlation functions using
all halos (purple) and only the 66± 10 most relevant
halos resulting from a relevance limit of 10−5M�/Mpc3

(blue). The percent error of each point as well as the
mean error and NRMSE is plotted below each figure.

the number of halos and logarithmically on the relevance
limit. The runtime saved by using only the most relevant
halos can only counteract the increase in runtime due to
larger lightcones for so long before the desired correlation
function NRMSE becomes too large, so accurate analysis
with radii above RL = 8 arcminutes may only be feasible
with parallelization.

The distribution of total CPU time in significant parts
of the lensing calculation for run 6 are as follows: 24.0%
of total time calculating individual halo convergence con-
tributions where 14.4% is spent in lensing table lookup
functions, 65.1% of CPU time was spent combining all
convergence contributions where 62.1% is spent on the
smooth-component correction, and the majority of the
remaining time spent on writing the output Astropy
columns. However, time spent across all components of
the lensing calculation was dominated by Astropy col-
umn use with nearly 55% of total time spent initializing,
copying, or summing column elements.

5 FEASIBILITY OF PARAMETER INFER-
ENCE USING PANGLOSS

One of the long-term goals of Pangloss is to be
able to use all available sky survey data (sky positions,
stellar masses, magnitude, photometric redshift, ellip-
ticities, etc.) to make a hierarchical inference of the
Universe’s cosmological and galaxy population model
hyperparameters such as the density parameters Ωm
and ΩΛ, the Hubble constant H0, and stellar mass -
halo mass relation [14]. This is a large undertaking
and will require considerable testing and calibration
on large N-body simulations such as the Millennium
Simulation. As a first step towards this goal, I attempted
to gauge the feasibility of implementing two methods
of parameter inference, maximum likelihood estimation
and approximate Bayesian computation, using the
current framework. The results of this feasibility test,
particularly the CPU time per likelihood estimation,
will help guide future work on Pangloss. For a detailed
description of a probablistic modeling approach to
gravitational lensing inference for large sky surveys,
see [33]. Exploratory notes of implementing such an
inference in the framework is available on Pangloss’s
public GitHub repository4.

5.1 Likelihood Estimation

Perhaps the most common method of parameter esti-
mation of statistical models is called maximum-likelihood
estimation (MLE). The likelihood is a function of the pa-

4 https://github.com/drphilmarshall/Pangloss/issues/23
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FIG. 14: The NRMSE of the ε-ε and galaxy-mass correlation function, plotted in blue and green respectively, as a
function of relevance limit / number of relevant halos used for 1440 sources with RL = 6 arcminutes. The lines
corresponding to an NRMSE of 5% and 10% are plotted for convenience. This suggests that, on average, either
best-case summary statistic can be approximated using only the 70 most relevant halos for a NRMSE below 10%
and the 300 most relevant halos for a NRMSE below 5%. This figure can be used to determine what relevance limit
should be used to recover the statistics to a desired accuracy.

FIG. 15: The projected convergence map of a 9 arcmin2 field of the Millennium Simulation using (left) the
ray-traced convergence, (center) the Pangloss predicted halo model convergence, and (right) the ray-traced
convergence subtracted from the halo model convergence. All maps are plotted with the same intensity scaling. The
halo model predicts individual foreground objects, but systematically overpredicts the convergence throughout the
map. This could be a result of incorrect halo profiles, a too-simplistic modeling of large-scale mass structures,
and/or a significant amount of dark matter that is not correlated with galaxies.

rameters of a statistical model that measures the proba-
bility of a data set or outcomes given the model parame-
ters [34]. It is the mathematical answer to the question,
“Given a particular set of parameters, what is the proba-
bility that this data set could have occurred?” The form
of the likelihood depends on the properties and circum-

stances of the data, but generally has the form of the
product of the probability density function f of each in-

dividual observation xi given model parameters ~θ:

L(~θ, x1, x2, . . . , xn) =

n∏
i=1

f(xi|~θ). (36)
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FIG. 16: The mean CPU runtime per lightcone with
radius RL = 6 arcminutes for various runs with different
(and cumulative) code optimizations described in
Section 4.5. The cumulative changes account for a 59%
decrease in the mean CPU time and a halving of the
initial variation. On average, the lensing prediction for
a single lightcone can now be made in 57± 8 ms.

A much more detailed introduction to likelihood and
MLE is given in [34]. For this work, the likelihood is
given by [35]:

L(Σ|εi,j , gi,j) =
1

ZL
exp

(
−χ2

2

)
, (37)

where εi,j is the j-component of the i-th predicted lensed
galaxy ellipticity, gi,j is the j-th component of the ‘true’
reduced shear corresponding to εi, χ

2 is the typical test
statistic

χ2 =

N∑
i=1

2∑
j=1

(εi,j − gi,j)2

σ2
, (38)

the normalization factor ZL is

ZL = (2πσ2)(2N)/2, (39)

where N is the number of background galaxies (the 2N
exponent is a result of the two ellipticity components for
each of the N galaxies), and the uncertainty in galaxy
ellipticity estimation σ is the sum in quadrature of the
dispersions of intrinsic and ‘observed’ (i.e. Pangloss-
predicted) ellipticities:

σ =
√
σ2

int + σ2
obs. (40)

While this works in principle, computationally it is
much easier to work with the natural logarithm of the

likelihood function called the log-likelihood. As the log-
arithm is a monotonically increasing function, the like-
lihood and log-likelihood achieve their maximum at the
same points and so can be used interchangeably in maxi-
mum likelihood estimation. From Equations (37)-(40) it
follows that the log-likelihood is given by

lnL = − lnZL −
1

2
χ2

= −N ln(2πσ)− 1

2

N∑
i=1

2∑
j=1

(εi,j − gi,j)2

σ2
. (41)

To use Pangloss to infer hyperparameters using MLE,
a set of trial parameters would be sampled from ap-
propriate prior distributions and used to calculate the
lensed ellipticities of a mock background catalog using
the methodology shown in Section 3. The log-likelihood
of this set of parameters would be calculated using Equa-
tion (41), and the process would be repeated for many
parameter combinations until a sufficient approximation
of the likelihood is made. The most likely hyperparame-
ters would then simply be the set of parameters that led
to the maximum likelihood.

However, exploring the parameter space efficiently is a
significant problem in MLE, especially in a dataset such
as this which there are potentially millions or even bil-
lions of parameters (i.e. halo masses). For this thesis,
I only compute the log-likelihood for a small handful of
parameter sets to gauge how feasible such an inference
would be in future work with far more computational
power.

5.2 Approximate Bayesian Computation

MLE is not the only common method of parameter
inference. As discussed in the previous section, the like-
lihood is computationally expensive to calculate and so
MLE may not lend itself well to inference when large
number of background galaxies are used. Approximate
Bayesian computation (ABC) is a class of computational
methods that estimate the posterior distribution with-
out calculating the likelihood function. This can be vital
for complex models in which the likelihood function does
not have an analytic form or is computationally costly to
evaluate. While fortunately Equation (41) is a relatively
simple likelihood function, the calculation may become
too costly for very large mock catalogs of millions or bil-
lions of source galaxies. However, ABC does come at a
cost; as the name implies, there are various assumptions
and approximations made in the process that can poten-
tially lead to an inaccurate posterior prediction. See [36]
for an excellent introduction to the topic. I summarize
a common ABC implementation and its application to
Pangloss below.

All ABC methods approximate the likelihood function
by simulating data using parameters sampled from the
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FIG. 17: The mean CPU runtime required for a single lensing prediction as a function of lightcone radius RL (left)
and relevance limit at constant radius (right). The mean runtime scales quadratically with lightcone radius, and
therefore halo count, with a overhead of about 55± 10 ms. Increasing the relevance limit to 10−6M�/Mpc3, or
about 300 relevant halos, decreases the mean runtime to near the minimum overhead.

prior distribution. If the simulated data are very ‘simi-
lar’ to the observed data, then the parameter set is ac-
cepted; if not, the parameter set is rejected. The pos-
terior is then approximated by a histogram of the ac-
cepted parameters after a large number of simulations
have been run. These methods are approximations as
simulated data that is ‘similar enough’ to observed data
is accepted rather than requiring exact matches. Prac-
tically, determining what metric of ‘similar’ to use and
what threshold value δ should be chosen for data rejec-
tion becomes a compromise of computation speed and
posterior accuracy.

ABC using a simple distance metric like Euclidean dis-
tance or χ2 is highly inefficient for data with large dimen-
sionality as the probability of the ‘distance’ being small
quickly vanishes. Instead, the similarity of observed and
simulated data is often characterized by summary statis-
tics such as mean and variance for simple data or corre-
lation functions for more advanced data. Thus an ABC
rejection algorithm reduces to predicting the summary
statistic for the simulated data, comparing to the cor-
responding summary statistic of the observed data, and
basing rejection on a chosen threshold of difference in
summary statistics.

A possible implementation of the above for Pangloss
would be as follows: Choose the the ray-traced lensed
ellipticities as the ‘observed’ data and compute its ε-ε
correlation function to be used as the desired summary
statistic. Let the distance metric to be the NRMSE be-
tween the predicted and ray-traced ε-ε correlation func-

tion. Compute the best-case ε-ε correlation function
using all halo data as shown in Section 3 and make
the threshold value δ be some multiple of the best-case
NRMSE (e.g. δ = 2 ·NRMSEbest-case). Create mock
data by repeating the methodology in 3 except use the
stellar mass - halo mass relation, dependent on parame-
ters we sample from a prior, to predict halo masses based
upon each galaxy’s stellar mass. Compute the simulated
ε-ε correlation function and determine whether to accept
or reject the data by determining if the NRMSE is below
the threshold δ. The posterior will be estimated after
a large number of iterations through the rejection algo-
rithm.

5.3 Results

I implemented the methodology in section 3 to make
weakly lensed ellipticity predictions for 20 mock catalogs
of N background sources with lightcone radii of RL = 4
arcminutes for N ranging from N = 102 to N = 5 · 106.
The mean CPU runtimes for a single likelihood calcu-
lation and ABC rejection decision as a function of N
is shown in Figure 18. The two methods take approxi-
mately the same amount of time up to N = 103 sources,
but the correlation function quickly becomes far too com-
putationally inefficient at N values above 104. While fur-
ther analysis is needed to determine whether more or less
ABC samples are required than posterior samples from
MLE, this result, as well as the limitation that ABC is
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FIG. 18: The mean CPU runtime of a single likelihood
evaluation and ABC decision, based upon the ε-ε
correlation function calculation, as a function of the
number of background sources N . The mean runtime
was determined using 20 mock catalogs for each N .
Both sampling methods require an overhead of about 3
ms and increase runtime with N , but a single ABC
decision takes three orders of magnitude more runtime
for N ≥ 105 galaxies.

fundamentally an approximation of the posterior, sug-
gests that any future inference work will likely use MLE
instead of ABC. However, the time spent for either in-
ference method is quite small in comparison to the CPU
time required to create lightcones and make the LOS lens-
ing predictions. This is an encouraging result which de-
emphasizes the choice of sampling method and suggests
that further work on the framework should be on addi-
tional optimization of the lensing prediction code rather
than posterior estimation.

6 DISCUSSION

6.1 Issues with the Halo Model

Both the ε-ε and galaxy-mass correlation functions
show clear issues with using the halo model to predict
the lensing of background sources with Pangloss, even
in the best-case scenario of perfect knowledge of the halo
masses and their spectroscopic redshifts. The system-
atic underprediction of correlation on scales larger than
0.2 arcminutes in the ε-ε function indicates that larger
structures like filaments and voids are not being fully cap-
tured by the halo model. This is not entirely surprising

as the only structure beyond halos accounted for in the
presented model was the smooth-component correction
which only adds sheets of uniform mass; clearly a better
model of filaments and voids is needed to make accu-
rate correlation predictions on scales larger than ∼1 ar-
cminute. The progression of model predicted ellipticity-
ellipticity correlation functions at larger radii converging
to the ray-traced correlation in Figure 11b supports this
analysis as the prediction was progressively better with
larger number of foreground halos and thus more mass
and structure.

A possible solution, briefly discussed in Section 2.2,
would be to model filaments as ‘cylinders’ of dark matter
attached to the most massive halos with densities, length
distributions, and frequencies matching simulated data.
This implementation might lead to better correlation pre-
dictions on large scales, but the details of the implemen-
tation, as well as analyzing how filaments affect LOS
lensing measurements, still needs to be explored. Stel-
lar masses could also be incorporated into the Pangloss
prediction but any effect would likely be dominated by
the missing features described above. Resolving the over-
prediction of correlation on scales below 0.2 arcminutes
in the galaxy-mass function is likely more straightfor-
ward, as sources this close to the center of foreground
masses are often in the strong lensing regime. Pangloss
currently removes any sources with total reduced shear g
greater than 0.5, but this potentially leaves sources that
are not entirely described by weak lensing. Correctly
modeling LOS strong lensing will require analyzing the
convergence and shear contributions of BMO halos in the
strong lensing regime and at the interface between strong
and weak lensing.

6.2 Most Halos are not Relevant

From Section 4.3 and Figure 14, we clearly do not need
to use all halos in the field to predict the best-case sce-
nario correlation functions within a NRMSE below 10%
or even 5%. This will be of essential importance when
making lensing predictions in fields of many square de-
grees that otherwise would be computationally infeasi-
ble. Figure 17 suggests that setting the relevance limit
to 10−6M�/Mpc3, or 300 relevant halos per lightcone,
will decrease the mean CPU time per lightcone prediction
to roughly the minimum overhead runtime of about 60
ms. According to Figure 14, this relevance limit will on
average keep the ε-ε and galaxy-mass correlation func-
tion’s NRMSE at or below 5%. These two figures can
be used in this way to decide what relevance limit is ap-
propriate for the desired tradeoff between mean runtime
speed and correlation function accuracy.
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6.3 Scaling Up Pangloss

While the current Pangloss framework can handle the
lensing predictions of 1440 sources in a 144 arcmin2 field
comfortably on a single processor, the goal is to scale
up the framework to make predictions for background
sources of the same number density in a 100 deg2 field;
this will require 3.6 million lightcones, each containing
at least 300 relevant foreground halos for an estimated
ε-ε NRMSE of less than 5%. Luckily, the prediction
is trivially parallelizable as the shear and convergence
calculation of each lightcone is independent of all other
lightcones. This makes GPUs an attractive candidate for
future work, as it would only take 360 GPUs with 10,000
threads each to carry out the prediction. Additionally,
the ∼5 MB of RAM per lightcone is sufficiently small to
fit 10,000 lightcones on a GPU.

However, the Pangloss code needs to be optimized be-
fore the parallelization will be efficient or even feasible.
The breakdown of CPU time spent on various compo-
nents of the lensing calculation in Section 4.5 indicates
that (1) the smooth-component correction needs to be
implemented far more quickly as it is responsible for on
average 62.1% of the total runtime and (2) the current
use of Astropy tables for data storage is not practical for
fields much larger than 1,000 arcmin2 or with lightcone
radii larger than 8 arcminutes. Possible solutions to (1)
are to experiment with faster numerical integrators or use
a lookup table for appropriate parts of the calculation,
while the second issue suggests that Pangloss should
store catalog data in databases rather than Astropy ta-
bles as databases are designed for rapid retrieval, modifi-
cation, and deletion of data [37]. While this will require
significant reworking of the framework to implement, the
CPU distribution indicates that such a change is neces-
sary for even a moderate scale up.

6.4 Future Inference Work

The results of Section 5 demonstrated that neither the
likelihood nor correlation function computation present
a significant computational issue in comparison to the
lensing calculation, so either are feasible approaches for
a hierarchical inference of the stellar mass - halo mass
relation. As a single ABC rejection algorithm performed
many orders of magnitude worse than a single likeli-
hood calculation for 102 ≤ N ≤ 5 · 106 sources, and ABC
fundamentally an approximation, it appears that the
method is not suitable for this work unless ABC ends
up requiring far less samples than the number of needed
posterior samples in MLE. However as discussed above
and in Section 5.3, there is still much more work to the
Pangloss framework that needs to be done, both in mod-
eling features and computational infrastructure, before
an inference using a large number of background sources
comparable to modern sky surveys can be achieved.

7 CONCLUSION

In this thesis, a simple halo model was used to recon-
struct lensing mass along lines of sight in the Millen-
nium Simulation to make predictions of how foreground
mass weakly lensed the ellipticities of 1440 generated
background sources across a field of 144 arcmin2. The
lensed ellipticities were characterized globally using the
ε-ε and galaxy-mass correlation functions and then com-
pared with the same statistics from the ray-traced data
calculated in [19]. I then explored what fraction of fore-
ground halos were truly relevant to the lensing predic-
tion, the computational performance of the used frame-
work, and how feasible an inference of hyperparameters
like the stellar mass - halo mass relation will be in future
work using either MLE or ABC. My conclusions to the
questions posed in the introduction are as follows:

• There was a systematic-underprediction of correla-
tion on scales larger than 0.2 arcminutes in the ε-
ε correlation function suggesting missing features
of large-scale structure in the halo model. The
galaxy-mass correlation function predicted by the
halo model was in relative agreement with the ray-
traced correlation function on scales from 0.2 to
2 arcminutes, but significantly overpredicted the
correlation on scales below 0.2 arcminutes due to
unaccounted for strong lensing effects. Figures 11b
and 12b show that the predicted summary statistics
converge towards the ‘true’ statistics at large light-
cone radii, although at quickly prohibitive compu-
tational cost. The model was also used to predict
convergence mass maps in small 9 arcmin2 regions
that visually demonstrated the prediction of excess
mass both in regions of foreground mass and the
voids between them. This result suggested that
a more complex model of filaments and voids is
needed to accurately predict lensing mass and the
correlation from large-scale mass structures.

• Figure 14 describes the fraction of relevant ha-
los needed to reproduce the best-case correlation
functions to a desired accuracy using the relevance
metric in Equation (33) derived by McCully et al.
in [18]. It suggests that, on average, the best-
case correlation functions can be approximated to
a NRMSE of less than 5% or 10% using a rele-
vance limit of 10−6M�/Mpc3, or ∼ 300 halos, and
10−5M�/Mpc3, or ∼ 70 halos, respectively. This
is an encouraging result as Figure 17 shows that
the lensing prediction scales quadratically with RL
and thus halo number. Instead of using the many
thousands of halos contained in each lightcone for
radii above 4 arcminutes, only a few hundred are
needed to reproduce the best-case summary statis-
tics within a NRMSE of below 5%. This will be
essential in future scale-ups where the lightcone ra-
dius and field of view will both be much larger.
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• The mean CPU time per likelihood evaluation and
ABC decision for catalogs of background sources
ranging from 102 ≤ N ≤ 5 · 106 is shown in Figure
18. While the likelihood calculation outperformed
the summary statistic calculation for all values of
N , the main result is that neither computation took
a significant amount of time relative to the lensing
calculation for a given N . This indicates that in-
ference feasibility rests upon optimizing the lensing
prediction code to sufficient speed as discussed in
Sections 4.5 and 6.3 rather than the chosen sam-
pling method.

Now that a proof of concept has been demonstrated,
work can be done to scale up the Pangloss framework
to make lensing predictions of sources across 100 deg2 af-
ter implementing the suggested computational and model
improvements. While the results are encouraging for a
toy model, many strong and unrealistic assumptions were
made in the methodology that limit its use in observa-
tional surveys. In the future, a similar analysis should be
made using simulated photometric redshifts and inferred
halo masses to see how different the predictions by the
halo model are from this best-case scenario.
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9 APPENDIX

9.1 Visualizing Correlation Functions

At first encounter, the use of correlation functions to analyze data can be difficult to comprehend, let alone visualize.
While by no means a thorough or mathematical analysis (see [38] for a more formal introduction), I have created some
explanatory plots to aid in visualizing how weakly lensed ellipticities can be measured with correlation functions and
place the main results of this paper in more context.

The main statistic used in this work is the ellipticity-ellipticity (ε-ε) correlation function, which has two tangential
components ξ± and a cross component ξ×. The components most interesting for gravitational lensing are the positive
tangential component ξ+, expected to be positive for lensed galaxies, and the cross component ξ×, which is expected
to be zero. To get an intuition for what these quantities measure, first consider the correlation values for individual
pairs of galaxies as shown in Figure 19. In each plot, the value of the correlation between two galaxies as a function of
their relative orientation is plotted as a colormap with a few sampled galaxy orientations superimposed. For ξ+, the
correlation is positive for parallel galaxies, negative for perpendicular galaxies, and zero for galaxies offset by 45◦. In
contrast, ξ× is zero for all parallel and perpendicular orientations while nonzero for most 45◦ offsets. As gravitational
lensing shears source images tangentially around a foreground mass, the tangential component is a measure of how
similarly two galaxies are lensed, while the cross component is an estimate of the bias (as it should be zero).

Now consider a region of space around a foreground lens populated with many background sources before lensing,
as in Figure 20a. In this plot, source ellipticities are plotted as sticks and colored by their distance from the lens.
Calculating the ξ+ component correlation pairs for all galaxies in the same color bin and making a scatter plot as a
function of the separation distance between the source pairs, we find the distribution in Figure 20b. The ξ+ component
of the ε-ε correlation function is simply the average of this scatter plot binned in separation distances along the x-axis.
As the scatter is randomly distributed around zero, the ε-ε correlation function for unlensed sources should be zero
on all scales.

The same plots for the source galaxies after lensing are shown in Figure 20c. The source ellipticities have clearly
aligned tangentially around the foreground lens in Figure 20c, and distinct patterns have appeared in the correlation
pair distribution for each color bin in Figure 20d. First consider a single color bin, such as the blue. Galaxies next to
one another are lensed in approximately the same way and thus nearly parallel, leading to a positive correlation at
small separation distances in Figure 20d. Moving a quarter of the way around the blue circle of galaxies, the lensed

(a) The positive tangential component of the ε-ε
correlation as a function of galaxy orientation plotted
as a colormap. The correlation component is positive
for parallel galaxies, negative for perpendicular
galaxies, and zero for galaxies offset by 45◦.

(b) The cross component of the ε-ε correlation as a
function of galaxy orientation plotted as a colormap.
While the pattern is more complicated than that of
the tangential component, note that the correlation
is zero for all preferred orientations after lensing.

FIG. 19: Correlation pair colormaps for ξ+ and ξ×.
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(a) A set of background sources around a foreground
lens (blue dot). The size and orientation of each stick
represents the intrinsic source ellipticity and is
colored by the distance away from the lens.

(b) The distribution of correlation pairs from the
source ellipticities in Figure 20a. Pairs of galaxies in
the same color bin are plotted in the correlation
scatter using the same color scheme.

(c) The same set of background sources in Figure 20a
after (magnified for effect) lensing by the foreground
mass. Regardless of initial orientation, the source
galaxies have all at least partially aligned
tangentially around the center lensing mass.

(d) The distribution of correlation pairs from the
source ellipticities in Figure 20c. Unlike Figure 20b,
there is now a non-zero signal in the correlation
distribution.

FIG. 20: ε-ε correlation function visualization.

ellipticities become perpendicular and have negative correlation. This can be seen as the dip in correlation at ‘middle’
separation distances in 20d. Finally for galaxies on opposite sides of the lens, their relative orientation is again parallel
and the correlation has returned to positive values. This spike in correlation is clearly visible in the distribution and
is shifted to the right for colors further from the lens as the radius of the color bin increases. Averaging all scatter
points in discrete separation distance bins, the ε-ε correlation function will no longer be zero and a detectable signal
will remain.
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9.2 Deriving the Standard Correlation Function Definition from TreeCorr’s Definition

The definition for the shear-shear (or equivalently, in the case of weak lensing, ellipticity-ellipticity) correlation
function components in Mike Jarvis’s TreeCorr package is different from the common definition given in Equation
(31) from Schneider [24]. For the aid of those who wish to use this very useful package but still use the conventional
correlation function definition, I have outlined the connection between the two definitions and the outputs of TreeCorr
below:

From Jarvis [31] (Page 3):

ξ+ =
〈
γiγ
∗
j

〉
= xip + i(xip im) (42)

ξ− =
〈
γiγje

−4iα
〉

= xim + i(xim im) (43)

where α is the angle between the two objects i, j and each γ is given by γn = |γn|e2iθn in polar form.

From Schneider [24] (Page 92):

ξ± = 〈γitγjt〉 ±
〈
γi×γj×

〉
(44)

ξ× =
〈
γitγj×

〉
(45)

where γnt
= −Re

(
γne
−2iα

)
and γn× = − Im

(
γne
−2iα

)
.

SCHNEIDER’S ξ+ TO JARVIS’S XIP

Starting with Schneider’s definition, observe that

ξ+ = 〈γitγjt〉+
〈
γi×γj×

〉
=
〈
Re
(
γie
−2iα

)
· Re

(
γje
−2iα

)〉
+
〈
Im
(
γie
−2iα

)
· Im

(
γje
−2iα

)〉
=
〈

Re
(
|γi|e2i(θi−α)

)
· Re

(
|γj |e2i(θj−α)

)〉
+
〈

Im
(
|γi|e2i(θi−α)

)
· Im

(
|γj |e2i(θj−α)

)〉
= 〈|γi| · |γj | cos (2(θi − α)) cos (2(θj − α))〉+ 〈|γi| · |γj | sin (2(θi − α)) sin (2(θj − α))〉 .

Using the trig identities

cos(u) cos(v) =
1

2
[cos(u− v) + cos(u+ v)] , (46)

sin(u) sin(v) =
1

2
[cos(u− v)− cos(u+ v)] , (47)

and the linearity of the expectation operator, it is straightforward to show that

ξ+ = 〈|γi| · |γj | cos (2(θi − θj))〉 .

Now using the identity

cos(u± v) = cos (u) cos (v)∓ sin (u) sin (v) , (48)

the previous equation can be written as

ξ+ = 〈|γi| · |γj | · [cos (2θi) cos (2θj) + sin (2θi) sin (2θj)]〉
= 〈Re(γi) · Re(γj) + Im(γi) · Im(γj)〉 .

Using the complex number identities
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Re(z) =
1

2
[z + z∗] , (49)

Im(z) =
1

2i
[z − z∗] , (50)

it follows that

ξ+ =

〈
1

4

[
(γi + γ∗i )(γj + γ∗j )− (γi − γ∗i )(γj − γ∗j )

]〉
=

〈
1

2

[
γiγ
∗
j + (γiγ

∗
j )∗
]〉

=
〈
Re(γiγ

∗
j )
〉

= xip. (51)

SCHNEIDER’S ξ− TO JARVIS’S XIM

The first few steps are identical to the previous section except for the minus sign in the definition of ξ−, giving

ξ− = 〈γitγjt〉 −
〈
γi×γj×

〉
= 〈|γi| · |γj | cos (2(θi − α)) cos (2(θj − α))〉 − 〈|γi| · |γj | sin (2(θi − α)) sin (2(θj − α))〉
= 〈|γi| · |γj | cos (2(θi + θj − 2α))〉 .

Now using Equation (48) twice, first letting u = 2(θi + θj) and v = −4α, and then letting u = 2θi and v = 2θj , this
equation becomes

ξ− =
〈
|γi| · |γj |

(
[cos(2θi) cos(2θj)− sin(2θi) sin(2θj)] cos(4α) + [sin(2θi) cos(2θj) + cos(2θi) sin(2θj)] sin(4α)

)〉
=
〈[

Re(γi) · Re(γj)− Im(γi) · Im(γj)
]

cos(4α) +
[

Im(γi) · Re(γj) + Re(γi) · Im(γj)
]

sin(4α)
〉
.

Using the identities (49) and (50), and simplifying the leftover terms, this equation can be shown to equal

ξ− =
〈

Re(γiγj) cos(4α) + Im(γiγj) sin(4α)
〉
.

Now observe that for two complex numbers a and b, it is true that

Re(a · b∗) = Re(a) · Re(b) + Im(a) · Im(b). (52)

Then setting a = γiγj and b = e4iα, it must be true that

Re
(
γiγje

−4iα
)

= Re(γiγj) cos(4α) + Im(γiγj) sin(4α).

Combining this with our previous result, this means that

ξ− =
〈

Re(γiγj) cos(4α) + Im(γiγj) sin(4α)
〉

=
〈
Re
(
γiγje

−4iα
)〉

= xim. (53)

SCHNEIDER’S ξ× TO JARVIS’S 1
2 (XIM IM− XIP IM)

Starting from Schneider’s definition of ξ×,
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ξ× =
〈
γitγj×

〉
=
〈

Re
(
|γi|e2i(θi−α)

)
· Im

(
|γj |e2i(θj−α)

)〉
=
〈
|γi| · |γj | cos (2(θi − α)) sin (2(θj − α))

〉
.

Using the trig identity

cos(u) sin(v) =
1

2
[sin(u+ v)− sin(u− v)] , (54)

the previous equation becomes

ξ× =

〈
|γi| · |γj | ·

1

2

[
sin (2(θi + θj − 2α))− sin (2(θi − θj))

]〉
.

Next, applying the identities

sin(u± v) = sin(u) cos(v)± cos(u) sin(v) (55)

along with (48) iteratively until each trig function only has a single term, the equation becomes

ξ× =
〈
|γi| · |γj | ·

1

2

(
[sin(2θi) cos(2θj) + cos(2θi) sin(2θj)] cos(4α)

− [cos(2θi) cos(2θj)− sin(2θi) sin(2θj)] sin(4α)

− sin(2θi) cos(2θj) + cos(2θi) sin(2θj)
)〉

=
〈1

2

(
[Im(γi) · Re(γj) + Re(γi) · Im(γj)] cos(4α)

− [Re(γi) · Re(γj)− Im(γi) · Im(γj)] sin(4α)

− Im(γi) Re(γj) + Re(γi) · Im(γj)
)〉
.

Using the identities (49) and (50), this can be simplified to

ξ× =

〈
1

2

[
Im(γiγj) cos(4α)− Re(γiγj) sin(4α)− Im(γiγ

∗
j )
]〉

.

Consider again two complex numbers a and b. Observe that

Im(a · b∗) = Im(a) · Re(b)− Re(a) · Im(b). (56)

Then setting a = γiγj and b = e4iα, it must be true that

Im
(
γiγje

−4iα
)

= Im(γiγj) cos(4α)− Re(γiγj) sin(4α).

Combing these results give

ξ× =

〈
1

2

[
Im(γiγj) cos(4α)− Re(γiγj) sin(4α)− Im(γiγ

∗
j )
]〉

=

〈
1

2

[
Im
(
γiγje

−4iα
)
− Im(γiγ

∗
j )
]〉

=
1

2

[
xim im− xip im

]
. (57)

as desired.


