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Abstract – For this thesis, two proprietary estimation techniques were developed, 

implemented, and tested for acoustic space characterization.  The first technique 

developed was a customized impulse response calculation tool, which could furthermore 

be implemented in both inverse filtering applications, as well as a reverberation-modeling 

filter.  The second estimation technique involved a joint spectral analysis of a frequency-

swept input.  This spectral analysis was based on short time Fourier Transform, and gave 

the relative energies of the response in both the frequency and time domains.  This 

technique could be extended to analyze the response of the room, and make logical 

deductions on where resonances could occur within the space. 

These techniques were developed and simulated using a Matlab environment, and 

the testing of the technique took place in common household areas.  For both estimation 

techniques it was assumed that no additive noise, unwanted voices, or positioning 

contributed to the source.  In the Impulse Response measurement technique, the testing 

was all done in mono.  In the acoustic space joint estimation, the signal was captured in 

stereo. The IR calculation supported known behaviors of household rooms, and thus was 

determined a successful estimation method.  In the joint estimation technique, results 

displayed harmonic resonances at specific frequencies, which could subsequently be 

attenuated either via signal processing or acoustic treatment.  The results of both 

techniques can be integrated into a variety of environments where a static receiver is 

considered.   
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I- Introduction 

For Scientists and Engineers alike, it has been a chief concern to try to quantify 

how signals behave in different environments.  This environment could be a physical 

space such as a room or a theatre, a microscopic object, or even a galaxy.  In 

environments such as these, it can be desirable for the environment to have certain 

response characteristics- depending on what its’ use is.  For instance, it could be desirable 

for a concert hall to have a reverberant response at high frequencies, and a damped 

response at low frequencies.  In a classroom, it could be beneficial to have a dry, even 

response across the room and amplification from the head of the classroom to the back.  

In the past it has been possible to use frequency response estimation techniques, along 

with acoustic analysis, to characterize these acoustic spaces.  With this estimation 

calculation, the user can- through testing- determine whether or not the desired criteria 

were met or not.  However, the response of a room can be thought of as having two 

different metrics by which it can be quantified: the spectrum of frequencies over time, 

and the energy of the total signal in time.   Though the time and frequency domain 

representations share their benefits, it is not possible to see exactly what frequencies 

contributed to a particular instance of the energy signal, and it is not possible to see how 

much energy belonged to each frequency in the spectrum.  For acoustic spaces it was 

desirable to develop a way that the response could be quantified as a joint spectrum, 

which would allow the observation of energy concentrations at resonant frequencies, and 

attenuations in others.  Thus, the first task at hand for this project was to find an 

appropriate method by which the joint spectrum could be utilized to observe the 

frequency and time responses of an acoustic space.   

While computing this estimation technique to obtain the joint spectrum of the 

acoustic space, it is also possible to use the results in a single-dimension to create an 

impulse response.  The test signal for the space characterization was selected to behave in 

a way such that, when the recorded response is convolved with a folded version of its’ 
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ideal signal, an impulse response approximation is observed.  Using this impulse 

response, and performing an inverse operation, it could then be possible to subtract the 

environmental effects of the room from the receiver end.  This was the second objective 

of this study, and could further attribute to the power of the estimation technique 

employed.   

II- Technical Contents 

  

2.1 Impulse Response Approximation 

In electrical engineering, systems can be thought of as having a transfer function.  

Transfer functions are a mathematical tool that engineers can use to communicate the 

behavior of systems in the presence of an input.  Furthermore, once a transfer function is 

obtained numerically, it is possible to perform analytic techniques to alter the behavior of 

the transfer function given the current description that the function provides.  However, 

measuring a transfer function directly is a difficult and time-consuming process.  Thus, 

most transfer function measurements in the experimental sense involve the use of impulse 

response estimations.  An impulse response is effectively the inverse Fourier transform of 

the transfer function.  Because of this property, the transfer function can be directly 

obtained from the impulse response.  In this section, an experimental method by which 

the impulse response could be approximated is proposed. 

2.1.1-The Exponential Sine Sweep  

 Classically, an approximate frequency response of a system can be calculated 

through the measurement of the output of a system in response to an input of varying 

frequencies.  These frequencies can be discretely selected, or swept continuously through 

a spectrum specified by the user.  In a classical sense the measured output would be 

observed as a linear, time invariant function of time.  What this means is that the system 

produces an output that has both a linear relationship to the input, and has an input/output 

pair that remains the same when delayed in time.  The challenge with experimental 
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measurements of acoustic spaces is that rooms seldom behave as linear, time-invariant 

systems.  Thus, it is quite difficult to obtain a system model of the rooms’ frequency 

response in the classical sense.  

To circumvent the issue of obtaining a linear system function from an inherently 

nonlinear entity, an input had to be selected such that the linear portion of the response 

could be decomposed completely from the nonlinear portion of the rooms’ response.  The 

best way in which a signal could be decomposed such that these portions of the response 

could be separated was to select a specially behaved input signal.  This input signal was a 

sinusoidal signal with a frequency swept in time such that, when used as an input to a 

system, would produce an output that could be analyzed to retrieve both nonlinear and 

linear responses of the system.  This well-behaved signal was known as an Exponential 

Sine Sweep (ESS) signal [2].  The ESS is a special class of a sinusoidal signal, and 

behaved similarly to a chirp signal.  Chirp signals are also sinusoidal functions, but they 

linearly increase or decrease in frequency over time.  This linear change in frequency 

produced a sound comparable to a birds’ chirp.  Much like the chirp, the ESS also can 

either increase or decrease in frequency. Unlike the chirp, however, the ESS had an 

exponential relationship in frequency change over time.  Mathematically, the ESS signal 

could be observed as the following equation:    
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 (1) 

Where the parameters w1 and w2 corresponded to the starting and stopping frequency of 

the ESS, and the parameter T corresponded to the duration of the sweep (in seconds).  

The ESS signal was useful for the application of room impulse responses because its’ 

exponential frequency change gave rise to properties which allowed this separation of the 

linear response from the nonlinear response of the room.  As rooms are largely nonlinear 
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and imperfect, it was then desirable to use (1) as an input signal to the system, as 

additional mathematics could be applied to the measured response to obtain an 

approximately linear model of the room.   

 

2.1.2-Inverse Filter Convolution  

With the input specified as an ESS signal, an operation had to be selected such 

that when used between the input signal and measured output signal, a linear model of the 

response was returned.  The mathematical operation that was selected to satisfy the 

desired response was known as a convolution operation.  

 

 Classically, a convolution can be observed as the following equation,  

€ 

f (t)∗g(t) = f (τ)⋅ g(t −τ)dτ
−∞

∞

∫   (2) 

The convolution equation in (2) can be interpreted intuitively as a measure of the 

amount of overlap between one function f(t) and another function g(t) shifted by a certain 

amount τ.  If the two functions overlap greatly, the area is greater and thus the 

convolution at that point is a larger number.  The opposite logic is true for the case where 

there is little overlap between the two functions.  In signal analysis, convolutions are 

employed to approximate the response of an input signal in the presence of a system.   

Practically any system therefore can be thought of as a convolution between the input and 

the modeled system response function.  With this in mind, it turned out that the 

convolution could also be used to approximate the systems’ impulse response in respect 

to the measured output and the ESS input of (1).  

The authors of [2] displayed that by flipping the ESS signal about the y-axis and 

using (2) between the flipped ESS input and the measured output, a resulting signal h(n) 

was observed.   

€ 

h(n) = x(−n)∗ y(n) (3) 
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In (3), the x(-n) variable corresponded to the flipped version of the ESS input.  

This operation was colloquially referred to as the inverse filter convolution, as the system 

function was calculated as a convolution between the input and output, rather than the 

being calculated as a convolution of the input and system function.  This operation was 

made possible because of the properties that the equation in (3) has in the frequency 

domain.  In the frequency domain, when an input signal is reversed in time (made 

negative), the frequency variable becomes a reciprocal of what its initial value was. 

€ 

x(−n)⇔ X 1
F
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (4) 

under the property of (4), it was possible to derive what the system function using the 

measured output and the input.  Because the system function was assumed to be of the 

Finite Impulse Response (FIR) type, the relationship of (4) would yield to a reciprocal of 

the input, meaning that the overall system function could be expressed as the following,  
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the derivation of (5) illustrated that under the FIR assumption of X, it was possible to 

calculate the system function of X via the multiplication of X(F) and Y(F) in the 

frequency domain.  Converting into the time domain yielded the operation in (3).  With 

the convolution operation specified, the final step of the system design for the impulse 

response generation was to interpret the result of (3) into a linear time-invariant system. 

2.1.3-Room Impulse Response Approximation  

The operation of the inverse filter convolution of (3) led to a resulting output h(n), 

which consisted of a sequence of different shaped impulse responses.  These impulse 

responses in the result corresponded to the nonlinear (or reflective) portions of the rooms’ 

response, and the linear portion of the room response.  Each response peak corresponded 
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to a different response harmonic of the room, and the overall amplitude of the impulsive 

signal sufficiently determined whether the impulsive signal was the nonlinear or linear 

response.  Once analyzing the signal, the linear response could be determined as the 

impulsive signal with the largest overall size in comparison to the other impulsive 

signals. 

To practically obtain the linear portion, a window function was specified to select 

the region of interest and append this region to a separate function, which was then 

interpreted as the approximate linear impulse response of the system.    

€ 

ˆ h (n) = h(n)w(n), w(n) =
1, n in linear portion
0 otherwise
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 (6) 

By windowing the total response, the result in (6) led to an approximation of the 

linear impulse response of the room.  This linear response could therefore be 

implemented for both filtering and inverse filtering applications.    

 

2.2 Time Frequency Analysis 

To gain another dimension in the characterization of the response of a room, a 

technique known as time frequency (T/F) analysis was implemented on the same ESS test 

described in the previous section.  With time frequency analysis, it was possible to 

observe both the frequency response and transient response aspects of the acoustic space 

jointly.  T/F analysis in essence is a statistical measure of both the frequency spectrum 

and energy spectrum in a plot that is referred to as a spectrogram.  From the spectrogram, 

it could then be possible to view the joint distribution of the signal in both frequency and 

time domains. 
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2.2.1-The Short Time Fourier Transform   

 There are many different methodologies available for the purpose of solving for 

time frequency analysis analytically.  For both speed and practical considerations, the 

method that most optimally fit the task of deriving the joint spectrum of the rooms’ 

response lied in a short-time Fourier transform.  The short-time Fourier transform 

operated identically to a Fourier transform, however rather than computing the Fourier 

transform of the entire spectrum, a small chunk of the signal of interest is transformed.  

This is referred to as a short-time Fourier transform because the “windowing” of the 

signal corresponded to selecting intervals of time by which the Fourier transform was 

then computed.  However, because the signals being used were digital entities, the 

discrete Fourier transform (DFT) was used in place of the classical analytic Fourier 

transform.  Thus, the discrete STFT was expressed as the following summation.  

€ 

X(m,ω ) = x[n]w[n −m]e− jωn
n=−∞

∞

∑   (7) 

The equation of (7) was similar to the classical DFT sum, however a new index m is 

included to signify the variable that shifts the newly added window function to select the 

portion of the signal to be transformed.  The arbitrary function w[n-m] is the 

“windowing” function that selects the chunks of time in the input signal x[n].  The 

window function is typically chosen to be a fractional size of the input signal such that 

when applied, the window function displays a small portion of x[n] and rejects the values 

of x outside the windows’ defined region.  It can also be instructive to note that a window 

of length n and magnitude 1 yields the traditional DFT of x[n].   
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2.2.2-The Gabor Transform   

With the STFT defined in (7) it was necessary to select a window function to best 

estimate the joint spectrum of the rooms’ response in both the time and frequency 

domains.  While there are many window functions to choose from, it was satisfactory to 

select a window that gave an equal resolution of both the time and frequency domains.  

The overall way in which the resolution in time and frequency can be assessed is via a 

metric known colloquially as the uncertainty principle of T/F analysis.  This uncertainty 

principle took a form similar to that of the Heisenberg uncertainty principle in quantum 

mechanics. 

€ 

Δt⋅ Δf ≥1 (8) 

The uncertainty principle of (8) showed that the product of the bandwidth in time and 

frequency, Δt and Δf respectively, could not be smaller than unity.  This meant that for 

joint spectrum analysis technique, the product of the bandwidth and the frequency 

spectrum resolutions were inherently dependent on one another.     

 Keeping (8) in mind, the window function that gave equal, optimal resolutions in 

both time and frequency was a Gaussian window function.  The window function was 

known as a Gaussian function because of its’ similar appearance in shape to a traditional 

Gaussian function.   

€ 

w(n) = e
−
1
2
n−(N −1)/ 2
σ (N −1)/ 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 (9) 

The window function in (9) could be specified for the overall length of the window N, 

and the variance (width) of the window σ.  The mean of the window was automatically 

set to be at the middle of the specified length.  There were tradeoffs inherent to the length 

of the window and the variance, and these tradeoffs were empirically determined to 

provide the best fit for the spectrum.    
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Using a Gaussian window in the STFT definition, it was then possible to define a new 

function that could be compactly expressed as a special case of the STFT, known as the 

Gabor transform.   

€ 

Gx (t, f ) = e−πσ (τ − t )
2

e− i2πf (τ )x(τ)d
−∞

∞

∫ τ  (10) 

The Gabor transform could be discretely implemented via the application the Gaussian 

window (9) in the STFT generalized equation of (7).  When practically applying the 

Gabor transform, a second parameter had to be specified to smooth the jump from the 

sequentially windowed spectra.  This smoothing parameter F was applied as a universal 

subtraction from the initial jump index m in window function of (7). 

Under this Gabor transform, it was then possible to realize the joint spectrum of any 

signal.  To assure the spectrum estimations were accurate, different classical signals 

could be implemented to assure the technique was properly specified.  

III- Methods  

3.1 Experimental Approach 

Both the impulse response calculation and the spectrum estimation techniques were 

implemented using the computational software Matlab. Thus, prior to any 

experimentation both the IR calculation and the spectrum estimation techniques had to be 

developed in a Matlab environment.  The contents of this section will explain in detail 

how each step of the two programs were developed and implemented to make meaningful 

measurements.  

3.1.1-Matlab Definitions 

The input signal that would be used to approximate both the IR response and the joint 

spectrum was the ESS signal that was specified under (1).  This signal was generated 

using the function specified in (A) of the appendix.  This function required a length of the 

sweep in time, a starting frequency and a stop frequency.  From these parameters, the 

equation (1) was discretely calculated given a sampling rate of 44.1 kHz.  The ESS signal 
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generated using the function generated in Matlab produces a sinusoidal signal that 

behaved as the designed intended.   

 From the generation of the input signal, two separate scripts were then developed 

so that the IR calculation and the Time/Frequency spectrum estimation could be 

computed.  The RIR impulse script first operated under the assumption that the input to 

the measurement was an ESS signal.  Following that, the script would take a measured 

output signal, and perform the calculations specified by (3) to obtain the approximation 

of the Room Impulse response.  The sampling rate was set to 44.1 kHz, however for 

enhanced speed performance a reduced sampling rate of 16 kHz could be used to perform 

the operation.  The script made use of built-in Matlab functions to approximate both the 

convolution operation as well as the time-reversed input signal.  Once the convolution 

result was obtained, the script then windowed the function under an empirical 

investigation to obtain the approximate linear response of the signal.  This resulted in the 

linear impulse response function that was desired. 

 The final Matlab script computed the Gabor Transform of the same measured 

output signal for the spectrum estimation.  The Gabor Transform script first specified the 

windows’ length, variance, and jump distance.  Following this definition, the script 

calculated the Gaussian window with the desired parameters, and appended it to an 

original variable and a dummy variable.  Following the calculation of the window, the 

script then received an input signal whose spectrum was to be analyzed.  With this input 

signal, the script multiplied the input signal by the window function and saved the result.  

With this windowed signal, the script then used the function fft to calculate the 

spectrum of the windowed chunk. After saving the result, the script then shifted the 

window by the specified amount and performed the same multiplication and fft 

operation.  This procedure was repeated until the end of the window reached the last 

sample of the input signal.  Following these computations, it was then possible to observe 
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the spectrum of the signal as a function of time and frequency. This plot was realized 

using the surf Matlab command.  

3.1.2-Conventional Laptop Approach 

Once all Matlab codes were assured to be working properly using well-behaved 

controlled signals, it was then possible to begin initial experimentations on the extent to 

which both the IR calculation and the T/F spectrum analysis technique worked.  These 

techniques were therefore first tested using inexpensive, commonplace testing apparatus.  

The ESS signal was first broadcasted from the Matlab environment to an external audio 

device using the built-in play function in Matlab.  With this, the ESS signal could be 

broadcast in any point in space.  To receive the audio signal, Matlab also used its’ 

audiorecorder and record commands to use the built-in laptop microphone as the 

receiver of the generated audio signal.  These commands recorded a mono audio signal 

from Matlab, and stored the result as an object of a special type.  This object could then 

be translated into a data array using a conversion command in Matlab.  To approximate a 

typical situation, the ESS sweep test was done in a living room setting. The source 

speaker was placed in a position that modeled where a person using the microphone for 

communication purposes may speak.  The program would first initialize the recording 

object, and then listen to the response as the ESS was played in Matlab.  With this 

measured output signal, it was possible to apply both the RIR calculation and spectrum 

estimation techniques to the response.   

3.1.3-Coincident Stereo Microphone Approach 

 The second experimental approach was used for a higher resolution spectrum 

analysis.  As the impulse response wasn’t as critical to solve in the high-resolution case, 

this apparatus was reserved for joint spectrum analysis.  The apparatus used for this 

system included two professional grade small diaphragm condenser microphones 

arranged in a coincident pair.  The coincident pair simulated human hearing by placing 

the two microphone diaphragms as close as possible, and perpendicular to each other.  
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These microphones were connected to a professional audio interface, and the samples 

were recorded using audio software.  The recorded audio was then imported into Matlab, 

and both channels were converted into left and right side responses and processed 

separately.  In place of the limited frequency response of the Bluetooth speaker, a hi-

fidelity stereo system was utilized to broadcast the ESS signal.  In a practical sense this 

experimental setup corresponded to assessing the joint spectrum of an acoustic space 

used as a listening room.  This scenario was of paramount interest, as the acoustics of a 

listening room are desired to be as flat as possible.  This technique could then assess the 

extent at which an even frequency response was observed in the room. 

 
IV- Results/Discussions 
 
4.1 Presentation of Results 

Using both experimental techniques proved to be a straightforward affair.  The first 

procedural step was to assure the proper behavior of the ESS signal generated using the 

code specified in the previous section.  An example of an ESS signal swept from 5 Hz to 

15 kHz can be observed below. 

 

Figure 1:  A 2 second ESS wave sampled at 44.1 kHz swept from 5 Hz to 15 kHz.   
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The power spectrum of the generated signal was also assessed to observe how the power 

of the ESS signal was distributed across the frequency.  The power spectrum was 

calculated from a simple DFT of the input signal.   

 
Figure 2: A plot of the power spectrum of the same ESS input signal specified in Figure 
1.  The overall magnitude of the power was normalized to 1, and the frequency axis (x-
axis) was plotted logarithmically. 
 
Having assured that the input signal was well behaved and thus appropriate to use for the 

experimental procedure, it was necessary to assure the proper operation of spectrum 

analysis script.  The spectrum analyzer was tested using a number of classical input 

signals.  One such example used a chirp signal with a modulation parameter in 

combination with a cosine wave.  Mathematically, the signal could be expressed as the 

following,  

€ 

x(t) = sin(2π(1000t +
3500 −1000

6
t 2) + cos(2000πt)   (10) 

where the arguments in the sine and cosine terms corresponded to the relative frequency 

at which both waves were specified at.  According to (10), the chirp should start at a 

frequency of 1000 Hz and end at a frequency of 3500 Hz.  The cosine wave should be a 

constant 1000 Hz. Under these conditions, the analysis technique yielded the following 

joint spectrum,  
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Figure 3: The joint Time/Frequency spectrum of the input signal corresponding to (10).  
The image shows clearly the desired response of both the modulated chirp and cosine 
signals.   
 

The result of Figure 3 confirmed that the joint analysis technique behaved experimentally 

as it was desired to theoretically.  With the operation of the joint spectrum analyzer 

confirmed, it was possible to perform experimental evidence to assess the response of the 

room using both analysis methods highlighted.   

 
4.1.1-Impulse Response Technique Experiment  

The first testing took place using the basic mono laptop microphone apparatus 

along with the Bluetooth speaker.  The testing took place in a common household area 

that was free from external additive noise.  It was important to note that both the 

receiving and sending apparatus were limited in the extent of their frequency response, 

and evenness in frequency response.  To circumvent this issue, further equalization by 

way of filtering could be applied to normalize the frequency response to unity across the 

spectrum of interest.  However, for the sake of brevity these imperfections were ignored, 

as the ESS measurement technique assured a linear response of the room.  With this in 
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mind, the following impulse response was approximated via the methodology described 

for the RIR calculation.   

 
Figure 4:  The resulting train of impulse responses as predicted in (3).  The magnitude 
response is purely qualitative and has no significance to the response.   
 
 
 

 
Figure 5:  The windowed impulse response to approximate the linear portion of the large 
rooms’ acoustic response.  The entire system operated on a sampling rate of 16 kHz. 
  
The room impulse response could further be investigated for a sanity check.  In acoustics, 

it is commonly known that most rooms exhibit something known as comb filtering.  

Comb filtering is a type of acoustic response that has harmonic points of cancellation 

across its’ frequency response.  Therefore, the approximated impulse response in Figure 5 

would most likely have a magnitude response that exhibited a comb-filtered trend.   
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Figure 6:  The magnitude and phase responses of the IR approximated in Figures 4 and 5.  
The magnitude was set to an arbitrary scale, and thus was qualitative.  The frequency axis 
was normalized to half of the sampling frequency; therefore the frequency 1 
corresponded to a frequency of 8 kHz .      
 
The resulting filter shape of Figure 6 served as a benchmark by which the impulse 

response could be qualitatively confirmed as accurate.   

For the smaller room, the impulse response and frequency response characteristics were 

calculated under the same assumptions and experimental procedures of the previous 

experiment.  Under the identical testing conditions, the following results were measured. 

 

Figure 7:  The windowed impulse response to approximate the linear portion of the small 
rooms’ acoustic response.  The entire system operated on a sampling rate of 16 kHz. 
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Figure 8:  The magnitude and phase responses of the IR approximated in Figures 7.  The 
actual value of the magnitude response was purely qualitative, as it was a function of the 
magnitude of the recorded input.  The frequency axis was normalized to half of the 
sampling frequency; therefore the frequency 1 corresponded to a frequency of 8 kHz .      
 

4.1.2-Joint Spectrum Technique Experiment 

The second experiment utilized the set of stereo microphones arranged in a 

coincidental pair.  The objective of this experiment, unlike the previous example, was to 

observe the joint spectrum of the response for use in identifying acoustic properties 

unable to be seen in either the time or frequency analysis alone.  Under the prescribed test 

setup, the following T/F spectra were observed for both the left and right channels of the 

stereo pair.   
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Figure 9:  The joint spectrum of the stereo room response to the ESS signal.  The 
spectrum plot on the left corresponded to the left channels’ response.  The spectrum plot 
on the left corresponded right channels’ response.   
 
 

 
Figure 10:  The joint spectrum of the stereo room response to the ESS signal.  The order 
of the plots corresponded to the left and right channels, but the axis was moved to 
emphasize the artificial harmonics generated. 
 
Between the results of Figure 9 and Figure 10, it was possible to make conclusions on the 

acoustic response of the room.   

 
4.2 Discussion of Results 

4.2.1-Implications of Impulse Response Technique  

Under the experimental procedure of the monaural experiment using the simple 

laptop apparatus, certain observations were made evident.  With the resulting impulse 

response shown in Figure 5 and the magnitude response in Figure 6, it was clear that the 

impulse response had a somewhat flat behavior across the frequency spectrum, with 

slight peaks and valleys in certain frequencies.  The overall magnitude response also 

appeared to have an approximately low pass behavior, though this behavior could have 

been due to the lack of energy in the high frequency bands of the test signal.  The 

frequencies that had slight attenuations appeared to have a harmonic relationship, and 

thus the magnitude response appeared as a comb shape.  This meant that there had been 

some comb filtering in frequencies at integer multiples and divisions of special frequency 
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wave.  The impulse response result of Figure 5 had three distinct portions.  The initial 

spike in the impulse response corresponded to the direct response of the room to the 

impulsive signal.  The portion beyond the initial spike, but not before the tailing signal 

(around 4000 samples) was the early reflection of the signal.  The rest of the IR 

corresponded to the reverberant part of the rooms’ response.   

 The phase response of the large rooms’ IR had an approximately linear phase 

response, which could be observed by superimposing a line through the phase response 

plot of Figure 6, and seeing the discrepancies between the ideal line and the measured 

response.  Linear phase corresponded to an approximately FIR filter behavior, and could 

be easily implemented using DSP.   

 The second set of results, in comparison to the larger rooms’ response, did have a 

similar trend.  The main differences in the small rooms’ measured IR lied in the early 

reflection and reverberation portions of the IR.   The IR measured in Figure 8 had an 

overall larger early reflection portion of the response, but a quicker reverberation tail.  

This physically corresponded to a smaller room, as smaller rooms are typically more 

reflective, and less reverberant.  This could also be observed in the magnitude response of 

the small room, as there were more apparent hills and valleys in the magnitude response 

of the small room in comparison to the large room.  The magnitude response of the small 

room also contained a faster overall attenuation from the highest frequency, and did not 

ring as severely at the high frequencies as the large rooms’ approximated IR.  

Furthermore, the phase response of the smaller room was not as well behaved as the large 

room, thus its’ consideration as an FIR linear-phase model would be more difficult to 

consider.   

4.2.2-Implications of Joint Spectrum Technique  

 The joint spectrum estimation results detailed more precise results of the acoustic 

response of the room studied.  As this room was desired to have a majority linear 

response with good attenuation at harmonic frequencies, the joint spectrum response was 
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capable of assessing where potential standing waves or resonances occurred in the room.  

In the experiment that generated Figure 9 and 10, the ESS wave was swept from 10 to 

20kHz over a time period of 13 seconds.  The overall shape of both the left and right 

channel responses could be interpreted straightforwardly.  The linear portion of the 

response was shown in the spectrum as the yellow (strong) portion of the spectrogram.   

The main point of interest in the stereo spectrogram was in the harmonic responses.  

These harmonic responses were the lighter shaded exponential curves above the main 

linear response in the spectrogram.  Figure 10 illustrated that the lighter shaded curve 

correlated harmonically with the main yellow curve.  It could be interpreted as 

approximately 2 times the fundamental.  Figure 10 also exhibited the existence of the 3rd 

harmonic, though this harmonic was much smaller in magnitude than the fundamental 

and 2nd.  These light curves corresponded to an artificial harmonic generated by the room, 

and was largely an undesirable effect when considering acoustic properties of a listening 

room.  This artificial resonance tended to cutoff close to the end of the sweep, but in 

between the start and stop peaks of the artificial harmonic, different resonances occurred 

between the left and right channels.  On the left channel, resonances were observed 

precisely around 1 kHz and 10 kHz, and loosely between 4 kHz and 6 kHz.  The right 

channel observed an overall harmonic response that was not as great as the left side, but 

did observe resonances at 1kHz, 10 kHz, and more precise resonances at 4 kHz and 5 

kHz.  This meant that there was most likely an object, or barrier in the room that caused a 

standing wave at frequencies that were integer multiples of 1kHz.  This corresponded to 

most likely having an object that was reflective at a distance at integer multiples of the 

wavelength of the source wave (1kHz).  The resulting possible distances that could lead 

to these resonances were tabulated below.  
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Frequency (in Hz) Length (in Feet) 
1000 1.13 
2000 0.565 
3000 0.283 
4000 0.141 
5000 0.071 
6000 0.035 

  Table 1: The series of frequencies and their corresponding wavelengths, assuming room 
temperature conditions 
  

 From the distances of Table 1, it could then be possible in theory to diagnose 

potential origins of these resonances in the room by assuming the frequencies were 

reflected geometrically perfectly off of objects, thus one could measure in the field the 

distance from the source speakers to various reflective objects that, when translated at a 

perfect 90 degrees, came into the field of the receivers’ pickups.  With these distances 

mapped out, it could then be possible to use absorptive material to remove these 

resonances from the room.  This technique could then be iteratively applied to 

systematically shape the response of a room to a behavior that is desired by the user.  

 

V- Conclusions 
 

The body of this research documented two different approaches in which a 

common household room could be characterized using methods and techniques consistent 

with signal analysis.  The first technique described developed a way in which an acoustic 

space could be statically characterized as an impulse response.  This impulse response 

could then be used for either inverse filtering (removing effects of noise), or for a 

reverberation effect for music.  For the inverse filtering case, one such application could 

be for use in hearing aid products or video broadcasting purpose.  Though the testing 

used ESS signals of a 2 second time duration, a shorter ESS sweep with a constricted 

bandwidth could be implemented to model the typical pitch and time durations associated 

with human conversation.  This ESS sweep could be performed iteratively, such that a 

statistical average of RIRs’ could be generated.  Once this RIR was generated it could 
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then be possible to subtract the effects of the rooms’ response straightforwardly. By result 

of the systems’ definition in the frequency domain, the theoretical signal without the 

effect of the room could be obtained by dividing the measured output and the impulses 

responses’ system functions.  This technique could therefore produce equalization to the 

receiver end that would provide a cleaner signal to the user.  The performed experiments 

displayed that the RIR could be calculated and modeled to behave as an entity consistent 

with DSP operation techniques. 

In the joint T/F analysis technique, it was possible to further characterize the 

acoustic space for way of improving the acoustic response.  This method succeeded in 

identifying where resonance frequencies occurred, as well as the existence of standing 

waves.  This technique could apply to a user who was interested in characterizing an 

acoustic space for a potential audio listening area, where true frequency response and 

even fidelity across the spectrum is of paramount importance.  In closing, the research 

performed served as an introduction to how these two methods could be implemented 

both theoretically and practically to characterize the acoustic response of a room.     
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VII- Appendix 
 
A) Matlab function to produce an Exponential Sinusoidal Wave for testing purposes 
 
function [ x ] = ESS( T,f1,f2 ) 
%Produces the exponential sine sweep of a signal using  
%parameters T=duration of sweep, w1 and w2 are the respective 
%frequencies in degrees, t is a time vector 
fs=44100; 
x=zeros(1,(fs*T)); 
j=1; 
for t=0:(1/fs):T-1/fs  
    x(j)=sin(T*2*pi*f1*(exp((t/T)*log(f2/f1))-1)/(log(f2/f1))); 
     if (T*f1*(exp((t/T)*log(f2/f1))-1)/(log(f2/f1)))==f2 
         break 
     end 
    j=j+1; 
end 
  
  
% samples per second 
   dt = 1/fs;                     % seconds per sample 
   StopTime = T;                  % seconds 
   t = (0:dt:StopTime-dt); 
   N = size(t,1); 
  
 plot(t,x)  
     
 set(gca,'FontName','Times New Roman','FontSize',10); 
   xlabel('Time in seconds'); 
   ylabel('Amplitude response (in Volts) '); 
   title('Time Domain Representation of ESS'); 
  
   X = fftshift(fft(x));   
  
   dF = fs/N;                      % hertz 
  f = fs/2*linspace(-1,1,T*fs);           % hertz 
   
   figure; 
   semilogx(f,abs(X/max(X))); 
   xlim([0 f2]) 
   grid ON 
 set(gca,'FontName','Times New Roman','FontSize',10); 
   xlabel('Frequency (in hertz)'); 
   ylabel('Normalized Magnitude Response'); 
   title('Power Spectrum of the ESS signal'); 
    
   end 
  
 
B) Matlab script to create a the impulse response approximation 
 
x=ESS(10,10,16000); 
 x=x'; 
  
 impulse=conv(flipud(x),Left); 
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 impulse=impulse'; 
 j=1; 
 for index=272810:298000 
     
         impresp(j)=impulse(index); 
         j=j+1; 
 end  

 
 

 C) Matlab script to approximate the joint spectrum of a signal x 
  
Mwin=6000*3; %Length of window (in samples), MUST BE ODD  
Mjump=1000*3; %jump between deltaT window slices 
Nfft=64*256; %128 point DFT 
var=0.5; %variance for gaussian window  
wcenter=(Mwin+1)/2; %define the midpoint of window  
% recobj=audiorecorder(8000, 24, 1); % create a voice signal  
index=128; %start index variable 
% recordblocking(recobj,2000/16000); 
% myrecording=getaudiodata(recobj); 
% delta=zeros(1,10000); 
% delta(500)=1;  
% 
modsine=(1/40*(cos((3*sin((50*(0:9999))/8000))+(2*pi*2500*(0:9999)/8000 
))))+(1/40)*cos(2*pi*3000*(0:9999)/8000); % modulated term  
% sine=(1/40)*cos(2*pi*1000*(0:9999)/8000); %sine term  
% deltcos=(1/40)*cos(2*pi*1000*(0:9999)/8000)+delta; %sine term with 
delta  
% 
modchirp=(1/40*(cos((0.0001*((0:9999).^2))+(3*sin((50*(0:9999))/8000))+ 
(2*pi*1000*(0:9999)/8000)))); %chirp with modulation 
  
%x=ESS(2,5,15000); 
figure; 
x=ESS(2,5,15000); 
x=x'; 
n=0; 
gwin=zeros(1,Mwin); %initialize gaussian window 
f=0:(44100)/length(x):((44100)-(44100)/length(x)); %initialize 
frequency vector 
while index <=length(x) 
clear gwin; %reset gaussian window every iteration  
gwin=zeros(length(x),1); 
shift=n*Mjump; 
for win=1:Mwin+1 
if win+shift>=length(x) 
break  
end 
gwin(win+shift)=exp(-.5*(((win-(Mwin/2))/(var*(Mwin/2)))^2)); 
end 
sigtrans=gwin.*x; %window the signal chunk 
sigfft=fft(sigtrans); %fft the window chunk 
hideal=[ones(1,length(x)/2) zeros(1,length(x)/2)]; %ideally filter 
signal to remove aliasing 
spec(:,n+1)=sigfft.*hideal'; %populate spectrogram 
n=n+1; 
index=shift; %Update index variable according to shift 
end 
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t=0:3.5/n:(3.5-3.5/n); 
surf(t',f',(1/20)*(spec.*conj(spec)),'Edgecolor','none') 
 set(gca,'FontName','Times New Roman','FontSize',10); 
xlabel('time of signal in seconds')  
ylabel('frequency of signal in Hz') 
zlabel('normalized magnitude response');  
title('Normalized Time-Frequency Spectrum of Measured Room Impulse 
Response'); 
ylim([0 22000]); 
zlim([0 1]); 
caxis([0 1]) 
  
  
 

 
 


