Bioanthropology, R. Scott – LPC – MW 9:40-11:10 (lec) and W 11:20-12:50 (lab)
This course will examine the evolution of the human species and explore the nature of human biological variation in the modern world. Students will consider the fossil evidence for human evolution using comparative data from nonhuman primate ecology to help reconstruct prehistoric lifeways. Particular attention will be given to how human populations utilized biological and behavioral mechanisms to adapt to their environments throughout evolutionary history.

Solar Energy, E. Landahl – LPC – Tu 1:00-5:30 (lec and lab)
Solar energy is both the most abundant and least utilized source of renewable energy available to mankind. This course will explore the scientific reasons for this discrepancy. Students will learn to recognize the transformation of energy between different forms and distinguish between physical and technical constraints on real world problems.

The Cosmos: From Big Bang to Extinction, W. Wolbach – LPC – TTH 11:20-12:50 (lec) and Tu 9:10-11:10 (lab)
This course introduces students to basic geological and astronomical concepts through a discussion of the chemical principles and scientific laws governing the composition of the components making up the Earth and solar system. Major topics include an introduction to the basic principles of matter, chemical reactivity, radioactive decay, mineral geology, and stellar/planetary formation. Applications of geochemistry will include the isotopic dating of geologic processes (e.g., mineral or rock formation, meteorite impacts) and a study of the environmental effects and extinctions triggered by giant meteorite impacts.

Archaeology, M. Gregory – LPC – TTH 9:40-11:10 (lec) and TH 11:20-12:50 (lab)
Archaeology is equal parts curiosity, tedium, and excitement for the archaeologist seeking answers about people’s past social and economic conditions. Through lectures and lab sessions, students will be introduced to a broad range of methodologies, theories, and practices currently employed by archaeologists who are working around the world to identify and interpret past human behavior.
WINTER QUARTER, cont.

The class explores the science behind key technologies that are making an impact on our lives, in particular in medical biosciences, biotechnology, and transgenic food. What causes inherited diseases? How is DNA sequencing impacting the way that doctors practice medicine? How are pharmaceutical drugs developed? Are GMO food products safe for our health and the environment? How do you interpret science news in the popular press to decide if it will impact your life? Other topics may be covered depending on student interest, which will be assessed continually throughout the course.

SPRING QUARTER

Honors Environmental Science, J. Montgomery – LPC MW 9:40-11:10 (lec) and W 11:30-2:30 (lab)
This course provides an overview of the interrelationships between humans and their environment from a scientific perspective, focusing on the application of scientific methodology to understanding, evaluating, and solving environmental issues. This interdisciplinary course is designed to provide an understanding of ecological principles and their relation to human populations and how cultural and societal institutions influence the availability and use of resources.

Science at the Edge of Space, B. Beck-Winchatz – LPC TTH 9:40-11:10 (lec) and TTH 11:20-12:20 (lab)
Students will develop an understanding of Earth’s upper atmosphere, learn how to build instruments capable of collecting data in this environment, and launch them on a weather balloon. Topics of societal/global concern, such as global warming and ozone depletion will be explored.